Show simple item record

dc.contributor.authorChen, Yu Fan
dc.contributor.authorLiu, Miao
dc.contributor.authorLiu, Shih-Yuan
dc.contributor.authorMiller, Justin Lee
dc.contributor.authorHow, Jonathan P
dc.date.accessioned2018-04-13T18:32:35Z
dc.date.available2018-04-13T18:32:35Z
dc.date.issued2016-01
dc.identifier.isbn978-1-62410-389-6
dc.identifier.urihttp://hdl.handle.net/1721.1/114717
dc.description.abstractFor safe navigation in dynamic environments, an autonomous vehicle must be able to identify and predict the future behaviors of other mobile agents. A promising data-driven approach is to learn motion patterns from previous observations using Gaussian process (GP) regression, which are then used for online prediction. GP mixture models have been subsequently proposed for finding the number of motion patterns using GP likelihood as a similarity metric. However, this paper shows that using GP likelihood as a similarity metric can lead to non-intuitive clustering configurations - such as grouping trajectories with a small planar shift with respect to each other into different clusters - and thus produce poor prediction results. In this paper we develop a novel modeling framework, Dirichlet process active region (DPAR), that addresses the deficiencies of the previous GP-based approaches. In particular, with a discretized representation of the environment, we can explicitly account for planar shifts via a max pooling step, and reduce the computational complexity of the statistical inference procedure compared with the GP-based approaches. The proposed algorithm was applied on two real pedestrian trajectory datasets collected using a 3D Velodyne Lidar, and showed 15% improvement in prediction accuracy and 4.2 times reduction in computational time compared with a GP-based algorithm.en_US
dc.description.sponsorshipFord Motor Companyen_US
dc.publisherAmerican Institute of Aeronautics and Astronautics (AIAA)en_US
dc.relation.isversionofhttp://dx.doi.org/10.2514/6.2016-1861en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titlePredictive Modeling of Pedestrian Motion Patterns with Bayesian Nonparametricsen_US
dc.typeArticleen_US
dc.identifier.citationChen, Yufan, Miao Liu, Shih-Yuan Liu, Justin Miller, and Jonathan P. How. “Predictive Modeling of Pedestrian Motion Patterns with Bayesian Nonparametrics.” AIAA Guidance, Navigation, and Control Conference, January 2016, San Diego, California, USA, American Institute of Aeronautics and Astronautics (AIAA), 2016..en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.mitauthorChen, Yu Fan
dc.contributor.mitauthorLiu, Miao
dc.contributor.mitauthorLiu, Shih-Yuan
dc.contributor.mitauthorMiller, Justin Lee
dc.contributor.mitauthorHow, Jonathan P
dc.relation.journalAIAA Guidance, Navigation, and Control Conferenceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-03-21T17:16:33Z
dspace.orderedauthorsChen, Yufan; Liu, Miao; Liu, Shih-Yuan; Miller, Justin; How, Jonathan P.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3756-3256
dc.identifier.orcidhttps://orcid.org/0000-0002-1648-8325
dc.identifier.orcidhttps://orcid.org/0000-0002-9838-1221
dc.identifier.orcidhttps://orcid.org/0000-0002-4621-2960
dc.identifier.orcidhttps://orcid.org/0000-0001-8576-1930
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record