Show simple item record

dc.contributor.authorChen, Yu Fan
dc.contributor.authorLiu, Miao
dc.contributor.authorEverett, Michael F
dc.contributor.authorHow, Jonathan P
dc.date.accessioned2018-04-13T18:42:36Z
dc.date.available2018-04-13T18:42:36Z
dc.date.issued2017-07
dc.identifier.isbn978-1-5090-4633-1
dc.identifier.issn978-1-5090-4634-8
dc.identifier.urihttp://hdl.handle.net/1721.1/114720
dc.description.abstractFinding feasible, collision-free paths for multiagent systems can be challenging, particularly in non-communicating scenarios where each agent's intent (e.g. goal) is unobservable to the others. In particular, finding time efficient paths often requires anticipating interaction with neighboring agents, the process of which can be computationally prohibitive. This work presents a decentralized multiagent collision avoidance algorithm based on a novel application of deep reinforcement learning, which effectively offloads the online computation (for predicting interaction patterns) to an offline learning procedure. Specifically, the proposed approach develops a value network that encodes the estimated time to the goal given an agent's joint configuration (positions and velocities) with its neighbors. Use of the value network not only admits efficient (i.e., real-time implementable) queries for finding a collision-free velocity vector, but also considers the uncertainty in the other agents' motion. Simulation results show more than 26% improvement in paths quality (i.e., time to reach the goal) when compared with optimal reciprocal collision avoidance (ORCA), a state-of-the-art collision avoidance strategy.en_US
dc.description.sponsorshipFord Motor Companyen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICRA.2017.7989037en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleDecentralized non-communicating multiagent collision avoidance with deep reinforcement learningen_US
dc.typeArticleen_US
dc.identifier.citationChen, Yu Fan, Miao Liu, Michael Everett, and Jonathan P. How. “Decentralized Non-Communicating Multiagent Collision Avoidance with Deep Reinforcement Learning.” 2017 IEEE International Conference on Robotics and Automation (ICRA), May 2017, Singapore, Singapore, 2017.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.mitauthorChen, Yu Fan
dc.contributor.mitauthorLiu, Miao
dc.contributor.mitauthorEverett, Michael F
dc.contributor.mitauthorHow, Jonathan P
dc.relation.journal2017 IEEE International Conference on Robotics and Automation (ICRA)en_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-03-21T16:59:10Z
dspace.orderedauthorsChen, Yu Fan; Liu, Miao; Everett, Michael; How, Jonathan P.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3756-3256
dc.identifier.orcidhttps://orcid.org/0000-0002-1648-8325
dc.identifier.orcidhttps://orcid.org/0000-0001-9377-6745
dc.identifier.orcidhttps://orcid.org/0000-0001-8576-1930
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record