MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cross-site comparison of ribosomal depletion kits for Illumina RNAseq library construction

Author(s)
Herbert, Zachary T; Kershner, Jamie P; Thimmapuram, Jyothi; Choudhari, Sulbha; Alekseyev, Yuriy O; Fan, Jun; Podnar, Jessica W; Wilcox, Edward; Gipson, Jenny; Gillaspy, Allison; Jepsen, Kristen; BonDurant, Sandra S; Morris, Krystalynne; Berkeley, Maura; LeClerc, Ashley; Simpson, Stephen D; Sommerville, Gary; Grimmett, Leslie; Adams, Marie; Butty, Vincent L G; Levine, Stuart S.; ... Show more Show less
Thumbnail
Download12864_2018_Article_4585.pdf (1.805Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Background Ribosomal RNA (rRNA) comprises at least 90% of total RNA extracted from mammalian tissue or cell line samples. Informative transcriptional profiling using massively parallel sequencing technologies requires either enrichment of mature poly-adenylated transcripts or targeted depletion of the rRNA fraction. The latter method is of particular interest because it is compatible with degraded samples such as those extracted from FFPE and also captures transcripts that are not poly-adenylated such as some non-coding RNAs. Here we provide a cross-site study that evaluates the performance of ribosomal RNA removal kits from Illumina, Takara/Clontech, Kapa Biosystems, Lexogen, New England Biolabs and Qiagen on intact and degraded RNA samples. Results We find that all of the kits are capable of performing significant ribosomal depletion, though there are differences in their ease of use. All kits were able to remove ribosomal RNA to below 20% with intact RNA and identify ~ 14,000 protein coding genes from the Universal Human Reference RNA sample at >1FPKM. Analysis of differentially detected genes between kits suggests that transcript length may be a key factor in library production efficiency. Conclusions These results provide a roadmap for labs on the strengths of each of these methods and how best to utilize them. Keywords: RNAseqr; RNA depletion; Illumina; NGS; ABRF; Transcriptomics
Date issued
2018-03
URI
http://hdl.handle.net/1721.1/114726
Department
Massachusetts Institute of Technology. Department of Biology
Journal
BMC Genomics
Publisher
BioMed Central Ltd
Citation
Herbert, Zachary T. et al. "Cross-site comparison of ribosomal depletion kits for Illumina RNAseq library construction" BMC Genomics 19, S2 (March 2018): 199 © 2018 The Author(s)
Version: Final published version
ISSN
1471-2164

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.