Show simple item record

dc.contributor.authorChater, Mario
dc.contributor.authorNi, Angxiu
dc.contributor.authorBlonigan, Patrick Joseph
dc.contributor.authorWang, Qiqi
dc.date.accessioned2018-04-13T19:47:16Z
dc.date.available2018-04-13T19:47:16Z
dc.date.issued2017-11
dc.date.submitted2017-09
dc.identifier.issn0036-1429
dc.identifier.issn1095-7170
dc.identifier.urihttp://hdl.handle.net/1721.1/114730
dc.description.abstractFor a parameterized hyperbolic system du dt = f(u; s) the derivative of the ergodic average hJi = limT→∞ 1 T R T 0 J(u(t); s) to the parameter s can be computed via the least squares shadowing (LSS) algorithm. We assume that the system is ergodic, which means that hJi depends only on s (not on the initial condition of the hyperbolic system). The algorithm solves a constrained least squares problem and, from the solution to this problem, computes the desired derivative dhJi ds . The purpose of this paper is to prove that the value given by the LSS algorithm approaches the exact derivative when the timespan used to formulate the least squares problem grows to infinity. It then illustrates the convergence result through a numerical example.en_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1137/15M1039067en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSIAMen_US
dc.titleLeast Squares Shadowing Method for Sensitivity Analysis of Differential Equationsen_US
dc.typeArticleen_US
dc.identifier.citationChater, Mario et al. “Least Squares Shadowing Method for Sensitivity Analysis of Differential Equations.” SIAM Journal on Numerical Analysis 55, 6 (January 2017): 3030–3046 © 2017 Society for Industrial and Applied Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorChater, Mario
dc.contributor.mitauthorNi, Angxiu
dc.contributor.mitauthorBlonigan, Patrick Joseph
dc.contributor.mitauthorWang, Qiqi
dc.relation.journalSIAM Journal on Numerical Analysisen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-04-12T16:15:53Z
dspace.orderedauthorsChater, Mario; Ni, Angxiu; Blonigan, Patrick J.; Wang, Qiqien_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4098-6196
dc.identifier.orcidhttps://orcid.org/0000-0001-9334-5005
dc.identifier.orcidhttps://orcid.org/0000-0001-5552-6235
dc.identifier.orcidhttps://orcid.org/0000-0001-9669-2563
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record