Show simple item record

dc.contributor.authorAmato, Christopher
dc.contributor.authorLiu, Miao
dc.contributor.authorVian, John
dc.contributor.authorOmidshafiei, Shayegan
dc.contributor.authorEverett, Michael F
dc.contributor.authorHow, Jonathan P
dc.date.accessioned2018-04-13T20:34:55Z
dc.date.available2018-04-13T20:34:55Z
dc.date.issued2017-07
dc.date.submitted2017-06
dc.identifier.isbn978-1-5090-4633-1
dc.identifier.isbn978-1-5090-4634-8
dc.identifier.urihttp://hdl.handle.net/1721.1/114736
dc.description.abstractThis paper presents the first ever approach for solving continuous-observation Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) and their semi-Markovian counterparts, Dec-POSMDPs. This contribution is especially important in robotics, where a vast number of sensors provide continuous observation data. A continuous-observation policy representation is introduced using Stochastic Kernel-based Finite State Automata (SK-FSAs). An SK-FSA search algorithm titled Entropy-based Policy Search using Continuous Kernel Observations (EPSCKO) is introduced and applied to the first ever continuous-observation Dec-POMDP/Dec-POSMDP domain, where it significantly outperforms state-of-the-art discrete approaches. This methodology is equally applicable to Dec-POMDPs and Dec-POSMDPs, though the empirical analysis presented focuses on Dec-POSMDPs due to their higher scalability. To improve convergence, an entropy injection policy search acceleration approach for both continuous and discrete observation cases is also developed and shown to improve convergence rates without degrading policy quality.en_US
dc.description.sponsorshipBoeing Companyen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICRA.2017.7989106en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleScalable accelerated decentralized multi-robot policy search in continuous observation spacesen_US
dc.typeArticleen_US
dc.identifier.citationOmidshafiei, Shayegan, Christopher Amato, Miao Liu, Michael Everett, Jonathan P. How, and John Vian. “Scalable Accelerated Decentralized Multi-Robot Policy Search in Continuous Observation Spaces.” 2017 IEEE International Conference on Robotics and Automation (ICRA), May 2017, Singapore, Singapore, 2017.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.mitauthorOmidshafiei, Shayegan
dc.contributor.mitauthorEverett, Michael F
dc.contributor.mitauthorHow, Jonathan P
dc.relation.journal2017 IEEE International Conference on Robotics and Automation (ICRA)en_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-03-21T16:32:23Z
dspace.orderedauthorsOmidshafiei, Shayegan; Amato, Christopher; Liu, Miao; Everett, Michael; How, Jonathan P.; Vian, Johnen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0903-0137
dc.identifier.orcidhttps://orcid.org/0000-0001-9377-6745
dc.identifier.orcidhttps://orcid.org/0000-0001-8576-1930
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record