dc.contributor.author | Amato, Christopher | |
dc.contributor.author | Vian, John | |
dc.contributor.author | Omidshafiei, Shayegan | |
dc.contributor.author | Liu, Shih-Yuan | |
dc.contributor.author | Everett, Michael F | |
dc.contributor.author | Lopez, Brett Thomas | |
dc.contributor.author | Liu, Miao | |
dc.contributor.author | How, Jonathan P | |
dc.date.accessioned | 2018-04-13T21:42:25Z | |
dc.date.available | 2018-04-13T21:42:25Z | |
dc.date.issued | 2017-07 | |
dc.date.submitted | 2017-06 | |
dc.identifier.isbn | 978-1-5090-4633-1 | |
dc.identifier.isbn | 978-1-5090-4634-8 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/114737 | |
dc.description.abstract | Robust environment perception is essential for decision-making on robots operating in complex domains. Intelligent task execution requires principled treatment of uncertainty sources in a robot's observation model. This is important not only for low-level observations (e.g., accelerom-eter data), but also for high-level observations such as semantic object labels. This paper formalizes the concept of macro-observations in Decentralized Partially Observable Semi-Markov Decision Processes (Dec-POSMDPs), allowing scalable semantic-level multi-robot decision making. A hierarchical Bayesian approach is used to model noise statistics of low-level classifier outputs, while simultaneously allowing sharing of domain noise characteristics between classes. Classification accuracy of the proposed macro-observation scheme, called Hierarchical Bayesian Noise Inference (HBNI), is shown to exceed existing methods. The macro-observation scheme is then integrated into a Dec-POSMDP planner, with hardware experiments running onboard a team of dynamic quadrotors in a challenging domain where noise-agnostic filtering fails. To the best of our knowledge, this is the first demonstration of a real-time, convolutional neural net-based classification framework running fully onboard a team of quadrotors in a multi-robot decision-making domain. | en_US |
dc.description.sponsorship | Boeing Company | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/ICRA.2017.7989107 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Semantic-level decentralized multi-robot decision-making using probabilistic macro-observations | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Omidshafiei, Shayegan, Shih-Yuan Liu, Michael Everett, Brett T. Lopez, Christopher Amato, Miao Liu, Jonathan P. How, and John Vian. “Semantic-Level Decentralized Multi-Robot Decision-Making Using Probabilistic Macro-Observations.” 2017 IEEE International Conference on Robotics and Automation (ICRA), May 2017, Singapore, Singapore, 2017. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Aeronautics and Astronautics | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Laboratory for Information and Decision Systems | en_US |
dc.contributor.mitauthor | Omidshafiei, Shayegan | |
dc.contributor.mitauthor | Liu, Shih-Yuan | |
dc.contributor.mitauthor | Everett, Michael F | |
dc.contributor.mitauthor | Lopez, Brett Thomas | |
dc.contributor.mitauthor | Liu, Miao | |
dc.contributor.mitauthor | How, Jonathan P | |
dc.relation.journal | 2017 IEEE International Conference on Robotics and Automation (ICRA) | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dc.date.updated | 2018-03-21T16:28:33Z | |
dspace.orderedauthors | Omidshafiei, Shayegan; Liu, Shih-Yuan; Everett, Michael; Lopez, Brett T.; Amato, Christopher; Liu, Miao; How, Jonathan P.; Vian, John | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0003-0903-0137 | |
dc.identifier.orcid | https://orcid.org/0000-0002-9838-1221 | |
dc.identifier.orcid | https://orcid.org/0000-0001-9377-6745 | |
dc.identifier.orcid | https://orcid.org/0000-0001-5366-911X | |
dc.identifier.orcid | https://orcid.org/0000-0002-1648-8325 | |
dc.identifier.orcid | https://orcid.org/0000-0001-8576-1930 | |
mit.license | OPEN_ACCESS_POLICY | en_US |