Show simple item record

dc.contributor.authorAmato, Christopher
dc.contributor.authorVian, John
dc.contributor.authorOmidshafiei, Shayegan
dc.contributor.authorLiu, Shih-Yuan
dc.contributor.authorEverett, Michael F
dc.contributor.authorLopez, Brett Thomas
dc.contributor.authorLiu, Miao
dc.contributor.authorHow, Jonathan P
dc.date.accessioned2018-04-13T21:42:25Z
dc.date.available2018-04-13T21:42:25Z
dc.date.issued2017-07
dc.date.submitted2017-06
dc.identifier.isbn978-1-5090-4633-1
dc.identifier.isbn978-1-5090-4634-8
dc.identifier.urihttp://hdl.handle.net/1721.1/114737
dc.description.abstractRobust environment perception is essential for decision-making on robots operating in complex domains. Intelligent task execution requires principled treatment of uncertainty sources in a robot's observation model. This is important not only for low-level observations (e.g., accelerom-eter data), but also for high-level observations such as semantic object labels. This paper formalizes the concept of macro-observations in Decentralized Partially Observable Semi-Markov Decision Processes (Dec-POSMDPs), allowing scalable semantic-level multi-robot decision making. A hierarchical Bayesian approach is used to model noise statistics of low-level classifier outputs, while simultaneously allowing sharing of domain noise characteristics between classes. Classification accuracy of the proposed macro-observation scheme, called Hierarchical Bayesian Noise Inference (HBNI), is shown to exceed existing methods. The macro-observation scheme is then integrated into a Dec-POSMDP planner, with hardware experiments running onboard a team of dynamic quadrotors in a challenging domain where noise-agnostic filtering fails. To the best of our knowledge, this is the first demonstration of a real-time, convolutional neural net-based classification framework running fully onboard a team of quadrotors in a multi-robot decision-making domain.en_US
dc.description.sponsorshipBoeing Companyen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICRA.2017.7989107en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleSemantic-level decentralized multi-robot decision-making using probabilistic macro-observationsen_US
dc.typeArticleen_US
dc.identifier.citationOmidshafiei, Shayegan, Shih-Yuan Liu, Michael Everett, Brett T. Lopez, Christopher Amato, Miao Liu, Jonathan P. How, and John Vian. “Semantic-Level Decentralized Multi-Robot Decision-Making Using Probabilistic Macro-Observations.” 2017 IEEE International Conference on Robotics and Automation (ICRA), May 2017, Singapore, Singapore, 2017.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.mitauthorOmidshafiei, Shayegan
dc.contributor.mitauthorLiu, Shih-Yuan
dc.contributor.mitauthorEverett, Michael F
dc.contributor.mitauthorLopez, Brett Thomas
dc.contributor.mitauthorLiu, Miao
dc.contributor.mitauthorHow, Jonathan P
dc.relation.journal2017 IEEE International Conference on Robotics and Automation (ICRA)en_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-03-21T16:28:33Z
dspace.orderedauthorsOmidshafiei, Shayegan; Liu, Shih-Yuan; Everett, Michael; Lopez, Brett T.; Amato, Christopher; Liu, Miao; How, Jonathan P.; Vian, Johnen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0903-0137
dc.identifier.orcidhttps://orcid.org/0000-0002-9838-1221
dc.identifier.orcidhttps://orcid.org/0000-0001-9377-6745
dc.identifier.orcidhttps://orcid.org/0000-0001-5366-911X
dc.identifier.orcidhttps://orcid.org/0000-0002-1648-8325
dc.identifier.orcidhttps://orcid.org/0000-0001-8576-1930
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record