Show simple item record

dc.contributor.authorAnghel, S.
dc.contributor.authorPassmann, F.
dc.contributor.authorRuppert, C.
dc.contributor.authorPoshakinskiy, A. V.
dc.contributor.authorTarasenko, S. A.
dc.contributor.authorMoore, J. N.
dc.contributor.authorYusa, G.
dc.contributor.authorMano, T.
dc.contributor.authorNoda, T.
dc.contributor.authorLi, X.
dc.contributor.authorBristow, A. D.
dc.contributor.authorBetz, M.
dc.contributor.authorSingh, Akshay k
dc.date.accessioned2018-04-17T17:57:19Z
dc.date.available2018-04-17T17:57:19Z
dc.date.issued2018-03
dc.date.submitted2017-11
dc.identifier.issn2469-9950
dc.identifier.issn2469-9969
dc.identifier.urihttp://hdl.handle.net/1721.1/114762
dc.description.abstractElectron spin transport and dynamics are investigated in a single, high-mobility, modulation-doped, GaAs quantum well using ultrafast two-color Kerr-rotation microspectroscopy, supported by qualitative kinetic theory simulations of spin diffusion and transport. Evolution of the spins is governed by the Dresselhaus bulk and Rashba structural inversion asymmetries, which manifest as an effective magnetic field that can be extracted directly from the experimental coherent spin precession. A spin-precession length λ[subscript SOI] is defined as one complete precession in the effective magnetic field. It is observed that application of (i) an out-of-plane electric field changes the spin decay time and λ[subscript SOI] through the Rashba component of the spin-orbit coupling, (ii) an in-plane magnetic field allows for extraction of the Dresselhaus and Rashba parameters, and (iii) an in-plane electric field markedly modifies both the λ[subscript SOI] and diffusion coefficient.en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevB.97.125410en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleField control of anisotropic spin transport and spin helix dynamics in a modulation-doped GaAs quantum wellen_US
dc.typeArticleen_US
dc.identifier.citationAnghel, S. et al. "Field control of anisotropic spin transport and spin helix dynamics in a modulation-doped GaAs quantum well." Physical Review B 97, 12 (March 2018): 125410 © 2018 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.mitauthorSingh, Akshay k
dc.relation.journalPhysical Review Ben_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-03-15T18:00:59Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsAnghel, S.; Passmann, F.; Singh, A.; Ruppert, C.; Poshakinskiy, A. V.; Tarasenko, S. A.; Moore, J. N.; Yusa, G.; Mano, T.; Noda, T.; Li, X.; Bristow, A. D.; Betz, M.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1059-065X
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record