Show simple item record

dc.contributor.authorBurke, Kyle
dc.contributor.authorGregg, Harrison
dc.contributor.authorHearn, Robert A.
dc.contributor.authorHoffmann, Michael
dc.contributor.authorIto, Hiro
dc.contributor.authorKostitsyna, Irina
dc.contributor.authorLeonard, Jody
dc.contributor.authorLöffler, Maarten
dc.contributor.authorSantiago, Aaron
dc.contributor.authorSchmidt, Christiane
dc.contributor.authorUehara, Ryuhei
dc.contributor.authorUno, Yushi
dc.contributor.authorWilliams, Aaron
dc.contributor.authorDemaine, Erik D
dc.contributor.authorHesterberg, Adam Classen
dc.date.accessioned2018-04-17T18:25:04Z
dc.date.available2018-04-17T18:25:04Z
dc.date.issued2016-11
dc.identifier.isbn978-3-319-48531-7
dc.identifier.isbn978-3-319-48532-4
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/114763
dc.description.abstractWe study the computational complexity of the Buttons & Scissors game and obtain sharp thresholds with respect to several parameters. Specifically we show that the game is NP-complete for C=2 colors but polytime solvable for C=1. Similarly the game is NP-complete if every color is used by at most F=4 buttons but polytime solvable for F≤3. We also consider restrictions on the board size, cut directions, and cut sizes. Finally, we introduce several natural two-player versions of the game and show that they are PSPACE-complete.en_US
dc.language.isoen_US
dc.publisherSpringeren_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-319-48532-4_6en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleSingle-Player and Two-Player Buttons & Scissors Gamesen_US
dc.typeArticleen_US
dc.identifier.citationBurke, Kyle, et al. “Single-Player and Two-Player Buttons & Scissors Games.” Discrete and Computational Geometry and Graphs, edited by Jin Akiyama et al., vol. 9943, Springer International Publishing, 2016, pp. 60–72.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorDemaine, Erik D
dc.contributor.mitauthorHesterberg, Adam Classen
dc.relation.journalDiscrete and Computational Geometry and Graphsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsBurke, Kyle; Demaine, Erik D.; Gregg, Harrison; Hearn, Robert A.; Hesterberg, Adam; Hoffmann, Michael; Ito, Hiro; Kostitsyna, Irina; Leonard, Jody; Löffler, Maarten; Santiago, Aaron; Schmidt, Christiane; Uehara, Ryuhei; Uno, Yushi; Williams, Aaronen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3803-5703
dc.identifier.orcidhttps://orcid.org/0000-0002-6053-1167
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record