dc.contributor.author | Burke, Kyle | |
dc.contributor.author | Gregg, Harrison | |
dc.contributor.author | Hearn, Robert A. | |
dc.contributor.author | Hoffmann, Michael | |
dc.contributor.author | Ito, Hiro | |
dc.contributor.author | Kostitsyna, Irina | |
dc.contributor.author | Leonard, Jody | |
dc.contributor.author | Löffler, Maarten | |
dc.contributor.author | Santiago, Aaron | |
dc.contributor.author | Schmidt, Christiane | |
dc.contributor.author | Uehara, Ryuhei | |
dc.contributor.author | Uno, Yushi | |
dc.contributor.author | Williams, Aaron | |
dc.contributor.author | Demaine, Erik D | |
dc.contributor.author | Hesterberg, Adam Classen | |
dc.date.accessioned | 2018-04-17T18:25:04Z | |
dc.date.available | 2018-04-17T18:25:04Z | |
dc.date.issued | 2016-11 | |
dc.identifier.isbn | 978-3-319-48531-7 | |
dc.identifier.isbn | 978-3-319-48532-4 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/114763 | |
dc.description.abstract | We study the computational complexity of the Buttons & Scissors game and obtain sharp thresholds with respect to several parameters. Specifically we show that the game is NP-complete for C=2 colors but polytime solvable for C=1. Similarly the game is NP-complete if every color is used by at most F=4 buttons but polytime solvable for F≤3. We also consider restrictions on the board size, cut directions, and cut sizes. Finally, we introduce several natural two-player versions of the game and show that they are PSPACE-complete. | en_US |
dc.language.iso | en_US | |
dc.publisher | Springer | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/978-3-319-48532-4_6 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Single-Player and Two-Player Buttons & Scissors Games | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Burke, Kyle, et al. “Single-Player and Two-Player Buttons & Scissors Games.” Discrete and Computational Geometry and Graphs, edited by Jin Akiyama et al., vol. 9943, Springer International Publishing, 2016, pp. 60–72. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Demaine, Erik D | |
dc.contributor.mitauthor | Hesterberg, Adam Classen | |
dc.relation.journal | Discrete and Computational Geometry and Graphs | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.orderedauthors | Burke, Kyle; Demaine, Erik D.; Gregg, Harrison; Hearn, Robert A.; Hesterberg, Adam; Hoffmann, Michael; Ito, Hiro; Kostitsyna, Irina; Leonard, Jody; Löffler, Maarten; Santiago, Aaron; Schmidt, Christiane; Uehara, Ryuhei; Uno, Yushi; Williams, Aaron | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0003-3803-5703 | |
dc.identifier.orcid | https://orcid.org/0000-0002-6053-1167 | |
mit.license | OPEN_ACCESS_POLICY | en_US |