MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Potassium fertilizer via hydrothermal alteration of K-feldspar ore

Author(s)
Ciceri, Davide; de Oliveira, Marcelo Augusto; Allanore, Antoine
Thumbnail
DownloadGreen-chemistry with SI.pdf (2.798Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Fertilizers ensure the necessary agricultural yields to feed an increasing world population. Augmenting fertilizer use conflicts with environmental concerns such as eutrophication and soil pollution, as well as with limited availability of fertilizers in the Global South. Currently, potassium fertilizers are soluble salts such as KCl, which are mined in the northern hemisphere. Two key issues arise for tropical agriculture. First, the inherent solubility of potassium salts questions their efficacy in weathered soils. Second, long-distance transportation leaves unsolved the problems of limited local supplies and infrastructure, freight-related CO₂ emissions and cost of the fertilizer for the end user. In this work, we synthesize according to green-chemistry principles a novel potassium-bearing material which mineralogy and elemental release have the potential to overcome the limitations of KCl. We process in mild hydrothermal conditions (T = 200 °C; P∼ 14 atm; t = 5 h) locally available K-feldspar ore (ultrapotassic syenite) and CaO. The resulting hydrothermal material is characterized using X-Ray Powder Diffraction (XRD), Electron Microscopy (EM), Electron Probe Micro-Analyzer (EPMA), Particle Size Distribution (PSD) and Specific Surface Area (SSA). Additionally, leaching tests are performed, showing that the availability of potassium in the processed material is two orders of magnitude higher than in the raw K-feldspar ore. This work introduces a green-chemistry paradigm for the synthesis of potassium fertilizers.
Date issued
2017-09
URI
http://hdl.handle.net/1721.1/114764
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering; MIT Materials Research Laboratory
Journal
Green Chemistry
Publisher
Royal Society of Chemistry
Citation
Ciceri, Davide, Marcelo de Oliveira, and Antoine Allanore. “Potassium Fertilizer via Hydrothermal Alteration of K-Feldspar Ore.” Green Chem. 19, 21 (September 2017): 5187–5202 © 2017 Royal Society of Chemistry
Version: Author's final manuscript
ISSN
1463-9262
1463-9270

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.