MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantification and visualization of coordination during non-cyclic upper extremity motion

Author(s)
Fineman, Richard A.; Stirling, Leia A.
Thumbnail
DownloadPIIS0021929017304189.pdf (3.386Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
There are many design challenges in creating at-home tele-monitoring systems that enable quantification and visualization of complex biomechanical behavior. One such challenge is robustly quantifying joint coordination in a way that is intuitive and supports clinical decision-making. This work defines a new measure of coordination called the relative coordination metric (RCM) and its accompanying normalization schemes. RCM enables quantification of coordination during non-constrained discrete motions. Here RCM is applied to a grasping task. Fifteen healthy participants performed a reach, grasp, transport, and release task with a cup and a pen. The measured joint angles were then time-normalized and the RCM time-series were calculated between the shoulder-elbow, shoulder-wrist, and elbow-wrist. RCM was normalized using four differing criteria: the selected joint degree of freedom, angular velocity, angular magnitude, and range of motion. Percent time spent in specified RCM ranges was used as. a composite metric and was evaluated for each trial. RCM was found to vary based on: (1) chosen normalization scheme, (2) the stage within the task, (3) the object grasped, and (4) the trajectory of the motion. The RCM addresses some of the limitations of current measures of coordination because it is applicable to discrete motions, does not rely on cyclic repetition, and uses velocity-based measures. Future work will explore clinically relevant differences in the RCM as it is expanded to evaluate different tasks and patient populations. Keywords: Coordination; Tele-rehabilitation; Grasp; Upper extremity; Performance metrics
Date issued
2017-08
URI
http://hdl.handle.net/1721.1/114777
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Journal of Biomechanics
Publisher
Elsevier
Citation
Fineman, Richard A., and Leia A. Stirling. “Quantification and Visualization of Coordination During Non-Cyclic Upper Extremity Motion.” Journal of Biomechanics 63 (October 2017): 82–91 © 2017 The Authors
Version: Final published version
ISSN
0021-9290

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.