Show simple item record

dc.contributor.authorWen, Xueda
dc.contributor.authorHe, Huan
dc.contributor.authorTiwari, Apoorv
dc.contributor.authorZheng, Yunqin
dc.contributor.authorYe, Peng
dc.date.accessioned2018-04-19T18:03:32Z
dc.date.available2018-04-19T18:03:32Z
dc.date.issued2018-02
dc.date.submitted2017-12
dc.identifier.issn2469-9950
dc.identifier.issn2469-9969
dc.identifier.urihttp://hdl.handle.net/1721.1/114801
dc.description.abstractExcitations in (3+1)-dimensional [(3+1)D] topologically ordered phases have very rich structures. (3+1)D topological phases support both pointlike and stringlike excitations, and in particular the loop (closed string) excitations may admit knotted and linked structures. In this work, we ask the following question: How do different types of topological excitations contribute to the entanglement entropy or, alternatively, can we use the entanglement entropy to detect the structure of excitations, and further obtain the information of the underlying topological order? We are mainly interested in (3+1)D topological order that can be realized in Dijkgraaf-Witten (DW) gauge theories, which are labeled by a finite group G and its group 4-cocycle ω∈H⁴[G;U(1)] up to group automorphisms. We find that each topological excitation contributes a universal constant ln d[subscript i] to the entanglement entropy, where d[subscript i] is the quantum dimension that depends on both the structure of the excitation and the data (G,ω). The entanglement entropy of the excitations of the linked/unlinked topology can capture different information of the DW theory (G,ω). In particular, the entanglement entropy introduced by Hopf-link loop excitations can distinguish certain group 4-cocycles ω from the others.en_US
dc.description.sponsorshipGordon and Betty Moore Foundation (Grant GBMF4303)en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevB.97.085147en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleEntanglement entropy for (3+1)-dimensional topological order with excitationsen_US
dc.typeArticleen_US
dc.identifier.citationWen, Xueda et al. "Entanglement entropy for (3+1)-dimensional topological order with excitations." Physical Review B 97, 8 (February 2018): 085147 © 2018 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorWen, Xueda
dc.relation.journalPhysical Review Ben_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-02-26T18:00:58Z
dc.language.rfc3066en
dspace.orderedauthorsWen, Xueda; He, Huan; Tiwari, Apoorv; Zheng, Yunqin; Ye, Pengen_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record