Show simple item record

dc.contributor.authorZhang, Weixia
dc.contributor.authorAbbaspourrad, Alireza
dc.contributor.authorTao, Jun
dc.contributor.authorHang, Tian
dc.contributor.authorWeitz, David A.
dc.contributor.authorXie, Xi
dc.contributor.authorAhn, Jiyoung
dc.contributor.authorBader, Andrew
dc.contributor.authorBose, Suman
dc.contributor.authorVegas, Arturo
dc.contributor.authorLin, Jiaqi
dc.contributor.authorIverson, Nicole M.
dc.contributor.authorBisker Raviv, Gili Hana
dc.contributor.authorLi, Linxian
dc.contributor.authorStrano, Michael S.
dc.contributor.authorAnderson, Daniel Griffith
dc.contributor.authorLee, Hyomin, Ph. D. Massachusetts Institute of Technology
dc.date.accessioned2018-04-20T19:04:59Z
dc.date.available2018-04-20T19:04:59Z
dc.date.issued2017-02
dc.date.submitted2017-01
dc.identifier.issn1530-6984
dc.identifier.issn1530-6992
dc.identifier.urihttp://hdl.handle.net/1721.1/114824
dc.description.abstractImplantable sensors that detect biomarkers in vivo are critical for early disease diagnostics. Although many colloidal nanomaterials have been developed into optical sensors to detect biomolecules in vitro, their application in vivo as implantable sensors is hindered by potential migration or clearance from the implantation site. One potential solution is incorporating colloidal nanosensors in hydrogel scaffold prior to implantation. However, direct contact between the nanosensors and hydrogel matrix has the potential to disrupt sensor performance. Here, we develop a hollow-microcapsule-based sensing platform that protects colloidal nanosensors from direct contact with hydrogel matrix. Using microfluidics, colloidal nanosensors were encapsulated in polyethylene glycol microcapsules with liquid cores. The microcapsules selectively trap the nanosensors within the core while allowing free diffusion of smaller molecules such as glucose and heparin. Glucose-responsive quantum dots or gold nanorods or heparin-responsive gold nanorods were each encapsulated. Microcapsules loaded with these sensors showed responsive optical signals in the presence of target biomolecules (glucose or heparin). Furthermore, these microcapsules can be immobilized into biocompatible hydrogel as implantable devices for biomolecular sensing. This technique offers new opportunities to extend the utility of colloidal nanosensors from solution-based detection to implantable device-based detection. Keywords: biomolecular sensing; Microcapsules; microfluidic fabrication; nanosensorsen_US
dc.description.sponsorshipJuvenile Diabetes Research Foundation International (Award 17-2013-507)en_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/ACS.NANOLETT.7B00026en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceOther repositoryen_US
dc.titleMicrofluidic Fabrication of Colloidal Nanomaterials-Encapsulated Microcapsules for Biomolecular Sensingen_US
dc.typeArticleen_US
dc.identifier.citationXie, Xi et al. “Microfluidic Fabrication of Colloidal Nanomaterials-Encapsulated Microcapsules for Biomolecular Sensing.” Nano Letters 17, 3 (February 2017): 2015–2020 © 2017 American Chemical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Scienceen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorXie, Xi
dc.contributor.mitauthorAhn, Jiyoung
dc.contributor.mitauthorBader, Andrew
dc.contributor.mitauthorBose, Suman
dc.contributor.mitauthorVegas, Arturo
dc.contributor.mitauthorLin, Jiaqi
dc.contributor.mitauthorIverson, Nicole M.
dc.contributor.mitauthorBisker Raviv, Gili Hana
dc.contributor.mitauthorLi, Linxian
dc.contributor.mitauthorStrano, Michael S.
dc.contributor.mitauthorAnderson, Daniel Griffith
dc.relation.journalNano Lettersen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-04-19T14:27:28Z
dspace.orderedauthorsXie, Xi; Zhang, Weixia; Abbaspourrad, Alireza; Ahn, Jiyoung; Bader, Andrew; Bose, Suman; Vegas, Arturo; Lin, Jiaqi; Tao, Jun; Hang, Tian; Lee, Hyomin; Iverson, Nicole; Bisker, Gili; Li, Linxian; Strano, Michael S.; Weitz, David A.; Anderson, Daniel G.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5108-8212
dc.identifier.orcidhttps://orcid.org/0000-0002-0739-8352
dc.identifier.orcidhttps://orcid.org/0000-0001-8223-035X
dc.identifier.orcidhttps://orcid.org/0000-0002-5921-3436
dc.identifier.orcidhttps://orcid.org/0000-0001-9522-8208
dc.identifier.orcidhttps://orcid.org/0000-0001-7779-0424
dc.identifier.orcidhttps://orcid.org/0000-0002-5166-1410
dc.identifier.orcidhttps://orcid.org/0000-0003-2592-7956
dc.identifier.orcidhttps://orcid.org/0000-0002-7635-5102
dc.identifier.orcidhttps://orcid.org/0000-0003-2944-808X
dc.identifier.orcidhttps://orcid.org/0000-0001-5629-4798
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record