Show simple item record

dc.contributor.authorFernández-Val, Iván
dc.contributor.authorKowalski, Amanda E.
dc.contributor.authorChernozhukov, Victor V
dc.date.accessioned2018-04-20T20:30:41Z
dc.date.available2018-04-20T20:30:41Z
dc.date.issued2014-07
dc.date.submitted2014-03
dc.identifier.issn0304-4076
dc.identifier.urihttp://hdl.handle.net/1721.1/114834
dc.description.abstractIn this paper we develop a new censored quantile instrumental variable (CQIV) estimator and describe its properties and computation. The CQIV estimator combines Powell (1986) censored quantile regression (CQR) to deal with censoring, with a control variable approach to incorporate endogenous regressors. The CQIV estimator is obtained in two stages that are nonadditive in the unobservables. The first stage estimates a nonadditive model with infinite dimensional parameters for the control variable, such as a quantile or distribution regression model. The second stage estimates a nonadditive censored quantile regression model for the response variable of interest, including the estimated control variable to deal with endogeneity. For computation, we extend the algorithm for CQR developed by Chernozhukov and Hong (2002) to incorporate the estimation of the control variable. We give generic regularity conditions for asymptotic normality of the CQIV estimator and for the validity of resampling methods to approximate its asymptotic distribution. We verify these conditions for quantile and distribution regression estimation of the control variable. Our analysis covers two-stage (uncensored) quantile regression with nonadditive first stage as an important special case. We illustrate the computation and applicability of the CQIV estimator with a Monte-Carlo numerical example and an empirical application on estimation of Engel curves for alcohol.en_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.JECONOM.2014.06.017en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleQuantile regression with censoring and endogeneityen_US
dc.typeArticleen_US
dc.identifier.citationChernozhukov, Victor, et al. “Quantile Regression with Censoring and Endogeneity.” Journal of Econometrics 186, 1 (May 2015): 201–221 © 2014 Elsevier B.V.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Economicsen_US
dc.contributor.mitauthorChernozhukov, Victor V
dc.relation.journalJournal of Econometricsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-04-19T19:09:13Z
dspace.orderedauthorsChernozhukov, Victor; Fernández-Val, Iván; Kowalski, Amanda E.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3250-6714
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record