Show simple item record

dc.contributor.authorLagrange, Romain
dc.contributor.authorLopez Jimenez, Francisco
dc.contributor.authorTerwagne, Denis
dc.contributor.authorBrojan, Miha
dc.contributor.authorReis, Pedro Miguel
dc.date.accessioned2018-04-23T17:32:56Z
dc.date.available2018-04-23T17:32:56Z
dc.date.issued2016-02
dc.date.submitted2015-12
dc.identifier.issn0022-5096
dc.identifier.urihttp://hdl.handle.net/1721.1/114878
dc.description.abstractWe present a combined analytical approach and numerical study on the stability of a ring bound to an annular elastic substrate, which contains a circular cavity. The system is loaded by depressurizing the inner cavity. The ring is modeled as an Euler-Bernoulli beam and its equilibrium equations are derived from the mechanical energy which takes into account both stretching and bending contributions. The curvature of the substrate is considered explicitly to model the work done by its reaction force on the ring. We distinguish two different instabilities: periodic wrinkling of the ring or global buckling of the structure. Our model provides an expression for the critical pressure, as well as a phase diagram that rationalizes the transition between instability modes. Towards assessing the role of curvature, we compare our results for the critical stress and the wrinkling wavelength to their planar counterparts. We show that the critical stress is insensitive to the curvature of the substrate, while the wavelength is only affected due to the permissible discrete values of the azimuthal wavenumber imposed by the geometry of the problem. Throughout, we contrast our analytical predictions against finite element simulations. Keywords: Elasticity; Instability; Buckling; Wrinkling; Ring; Substrateen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CMMI-1351449)en_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.JMPS.2016.02.004en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleFrom wrinkling to global buckling of a ring on a curved substrateen_US
dc.typeArticleen_US
dc.identifier.citationLagrange, R. et al. “From Wrinkling to Global Buckling of a Ring on a Curved Substrate.” Journal of the Mechanics and Physics of Solids 89 (April 2016): 77–95 © 2016 Elsevier Ltden_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorLagrange, Romain
dc.contributor.mitauthorLopez Jimenez, Francisco
dc.contributor.mitauthorTerwagne, Denis
dc.contributor.mitauthorBrojan, Miha
dc.contributor.mitauthorReis, Pedro Miguel
dc.relation.journalJournal of the Mechanics and Physics of Solidsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-04-20T11:16:52Z
dspace.orderedauthorsLagrange, R.; López Jiménez, F.; Terwagne, D.; Brojan, M.; Reis, P.M.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8569-5400
dc.identifier.orcidhttps://orcid.org/0000-0003-3984-828X
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record