MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exoskeleton energetics: Implications for planetary extravehicular activity

Author(s)
Carr, Christopher E.; Newman, Dava
Thumbnail
DownloadExoskeleton Energetics_2017.pdf (1.632Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Humans first visited another world nearly 50 years ago and are poised to return to the Moon and visit Mars in the coming decade(s). Developing a space suit that supports safe, efficient, and effective exploration despite the extremes of temperature, pressure, radiation, and environmental hazards like dust and topography remains a critical challenge. Space suits impose restrictions on movement that increase metabolic rate and limit the intensity and duration of extravehicular activity. In this study, a lower body exoskeleton was used to test a simple model that predicts the energy cost of locomotion across gait and gravity. Energetic cost and other variables were measured during treadmill locomotion, with and without a lower body exoskeleton, in simulated reduced gravity and in Earth gravity. Six subjects walked and ran at constant Froude numbers, non-dimensional parameters used to characterize gait. The springlike energy recovery of the exoskeleton legs was estimated using energetics data in combination with the model. Model predictions agreed with the observed results (no statistical difference). High spring-like energy recovery of the exoskeleton legs lowered measures of the energetic cost of locomotion. For planetary extravehicular activity, our work reveals potential approaches to optimizing space suits for efficient locomotion, for example, tuning the stiffness and spring-like energy recovery of space suit legs.
Date issued
2017-06
URI
http://hdl.handle.net/1721.1/114879
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
2017 IEEE Aerospace Conference
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Carr, Christopher E., and Dava J. Newman. "Exoskeleton Energetics: Implications for Planetary Extravehicular Activity." 2017 Aerospace Conference, 4-11 March, 2017, Big Sky, Montana, IEEE, 2017, pp. 1–14.
Version: Author's final manuscript
ISBN
978-1-5090-1613-6

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.