Show simple item record

dc.contributor.authorBaldini, Edoardo
dc.contributor.authorKubacka, Teresa
dc.contributor.authorMallett, Benjamin P. P.
dc.contributor.authorMa, Chao
dc.contributor.authorKoohpayeh, Seyed M.
dc.contributor.authorZhu, Yimei
dc.contributor.authorBernhard, Christian
dc.contributor.authorJohnson, Steven L.
dc.contributor.authorCarbone, Fabrizio
dc.date.accessioned2018-04-23T20:43:29Z
dc.date.available2018-04-23T20:43:29Z
dc.date.issued2018-03
dc.date.submitted2018-03
dc.identifier.issn2469-9950
dc.identifier.issn2469-9969
dc.identifier.urihttp://hdl.handle.net/1721.1/114908
dc.description.abstractRecent ultrafast magnetic-sensitive measurements [Johnson et al., Phys. Rev. B 92, 184429 (2015); Bothschafter et al., Phys. Rev. B 96, 184414 (2017)] have revealed a delayed melting of the long-range cycloid spin order in TbMnO[subscript 3] following photoexcitation across the fundamental Mott-Hubbard gap. The microscopic mechanism behind this slow transfer of energy from the photoexcited carriers to the spin degrees of freedom is still elusive and not understood. Here, we address this problem by combining spectroscopic ellipsometry, ultrafast broadband optical spectroscopy, and ab initio calculations. Upon photoexcitation, we observe the emergence of a complex collective response, which is due to high-energy coherent optical phonons coupled to the out-of-equilibrium charge density. This response precedes the magnetic order melting and is interpreted as the fingerprint of the formation of anti-Jahn-Teller polarons. We propose that the charge localization in a long-lived self-trapped state hinders the emission of magnons and other spin-flip mechanisms, causing the energy transfer from the charge to the spin system to be mediated by the reorganization of the lattice. Furthermore, we provide evidence for the coherent excitation of a phonon mode associated with the ferroelectric phase transition.en_US
dc.description.sponsorshipSwiss National Science Foundation (Fellowship P2ELP2_172290)en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevB.97.125149en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleLattice-mediated magnetic order melting in TbMnO[subscript 3]en_US
dc.typeArticleen_US
dc.identifier.citationBaldini, Edoardo, et al. “Lattice-Mediated Magnetic Order Melting in TbMnO[subscript 3].” Physical Review B, vol. 97, no. 12, Mar. 2018. © 2018 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorBaldini, Edoardo
dc.relation.journalPhysical Review Ben_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-03-27T18:00:23Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsBaldini, Edoardo; Kubacka, Teresa; Mallett, Benjamin P. P.; Ma, Chao; Koohpayeh, Seyed M.; Zhu, Yimei; Bernhard, Christian; Johnson, Steven L.; Carbone, Fabrizioen_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record