MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modifying and reacting to the environmental pH can drive bacterial interactions

Author(s)
Ratzke, Christoph; Gore, Jeff
Thumbnail
Downloadjournal.pbio.2004248.pdf (4.321Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Microbes usually exist in communities consisting of myriad different but interacting species. These interactions are typically mediated through environmental modifications; microbes change the environment by taking up resources and excreting metabolites, which affects the growth of both themselves and also other microbes. We show here that the way microbes modify their environment and react to it sets the interactions within single-species populations and also between different species. A very common environmental modification is a change of the environmental pH. We find experimentally that these pH changes create feedback loops that can determine the fate of bacterial populations; they can either facilitate or inhibit growth, and in extreme cases will cause extinction of the bacterial population. Understanding how single species change the pH and react to these changes allowed us to estimate their pairwise interaction outcomes. Those interactions lead to a set of generic interaction motifs-bistability, successive growth, extended suicide, and stabilization-that may be independent of which environmental parameter is modified and thus may reoccur in different microbial systems.
Date issued
2018-03
URI
http://hdl.handle.net/1721.1/114938
Department
Massachusetts Institute of Technology. Department of Physics
Journal
PLOS Biology
Publisher
Public Library of Science
Citation
Ratzke, Christoph, and Jeff Gore. “Modifying and Reacting to the Environmental pH Can Drive Bacterial Interactions.” Edited by Csaba Pal. PLOS Biology 16, 3 (March 2018): e2004248
Version: Final published version
ISSN
1545-7885
1544-9173

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.