Show simple item record

dc.contributor.authorLecoanet, Daniel
dc.contributor.authorVasil, Geoffrey M.
dc.contributor.authorMickelin, Oscar
dc.contributor.authorSlomka, Jonasz Jozef
dc.contributor.authorBurns, Keaton James
dc.contributor.authorMaltez Faria, Luiz
dc.contributor.authorDunkel, Joern
dc.date.accessioned2018-04-24T19:25:36Z
dc.date.available2018-04-24T19:25:36Z
dc.date.issued2018-04
dc.date.submitted2017-10
dc.identifier.issn0031-9007
dc.identifier.issn1079-7114
dc.identifier.urihttp://hdl.handle.net/1721.1/114948
dc.description.abstractRecent experiments demonstrate the importance of substrate curvature for actively forced fluid dynamics. Yet, the covariant formulation and analysis of continuum models for nonequilibrium flows on curved surfaces still poses theoretical challenges. Here, we introduce and study a generalized covariant Navier-Stokes model for fluid flows driven by active stresses in nonplanar geometries. The analytical tractability of the theory is demonstrated through exact stationary solutions for the case of a spherical bubble geometry. Direct numerical simulations reveal a curvature-induced transition from a burst phase to an anomalous turbulent phase that differs distinctly from externally forced classical 2D Kolmogorov turbulence. This new type of active turbulence is characterized by the self-assembly of finite-size vortices into linked chains of antiferromagnetic order, which percolate through the entire fluid domain, forming an active dynamic network. The coherent motion of the vortex chain network provides an efficient mechanism for upward energy transfer from smaller to larger scales, presenting an alternative to the conventional energy cascade in classical 2D turbulence.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CBET-1510768)en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevLett.120.164503en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleAnomalous Chained Turbulence in Actively Driven Flows on Spheresen_US
dc.typeArticleen_US
dc.identifier.citationMickelin, Oscar et al. "Anomalous Chained Turbulence in Actively Driven Flows on Spheres." Physical Review Letters 120, 16 (April 2018): 164503 © 2018 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorMickelin, Oscar
dc.contributor.mitauthorSlomka, Jonasz Jozef
dc.contributor.mitauthorBurns, Keaton James
dc.contributor.mitauthorMaltez Faria, Luiz
dc.contributor.mitauthorDunkel, Joern
dc.relation.journalPhysical Review Lettersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-04-20T18:00:06Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsMickelin, Oscar; Słomka, Jonasz; Burns, Keaton J.; Lecoanet, Daniel; Vasil, Geoffrey M.; Faria, Luiz M.; Dunkel, Jörnen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0464-2700
dc.identifier.orcidhttps://orcid.org/0000-0003-4761-4766
dc.identifier.orcidhttps://orcid.org/0000-0002-8129-2548
dc.identifier.orcidhttps://orcid.org/0000-0001-8865-2369
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record