MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Gaussian Mixture Model Smoother for Continuous Nonlinear Stochastic Dynamical Systems: Theory and Scheme

Author(s)
Lolla, Tapovan; Lermusiaux, Pierre
Thumbnail
Downloadmwr-d-16-0064.1.pdf (329.9Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Retrospective inference through Bayesian smoothing is indispensable in geophysics, with crucial applications in ocean and numerical weather estimation, climate dynamics, and Earth system modeling. However, dealing with the high-dimensionality and nonlinearity of geophysical processes remains a major challenge in the development of Bayesian smoothers. Addressing this issue, a novel subspace smoothing methodology for high-dimensional stochastic fields governed by general nonlinear dynamics is obtained. Building on recent Bayesian filters and classic Kalman smoothers, the fundamental equations and forward-backward algorithms of new Gaussian Mixture Model (GMM) smoothers are derived, for both the full state space and dynamic subspace. For the latter, the stochastic Dynamically Orthogonal (DO) field equations and their time-evolving stochastic subspace are employed to predict the prior subspace probabilities. Bayesian inference, both forward and backward in time, is then analytically carried out in the dominant stochastic subspace, after fitting semiparametric GMMs to joint subspace realizations. The theoretical properties, varied forms, and computational costs of the new GMM smoother equations are presented and discussed.
Date issued
2017-07
URI
http://hdl.handle.net/1721.1/114992
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Monthly Weather Review
Publisher
American Meteorological Society
Citation
Lolla, Tapovan, and Pierre F. J. Lermusiaux. “A Gaussian Mixture Model Smoother for Continuous Nonlinear Stochastic Dynamical Systems: Theory and Scheme.” Monthly Weather Review 145, 7 (July 2017): 2743–2761 © 2017 American Meteorological Society
Version: Final published version
ISSN
0027-0644
1520-0493

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.