MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Drag Management in High Bypass Turbofan Nozzles for Quiet Approach Applications

Author(s)
Shah, P.; Robinson, A.; Price, A.
Thumbnail
Downloadturbo_136_02_021009.pdf (7.716Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The feasibility of a drag management device that reduces engine thrust on approach by generating a swirling outflow from the fan (bypass) nozzle is assessed. Deployment of such "engine air-brakes" (EABs) can assist in achieving slower and/or steeper and/or aeroacoustically cleaner approach profiles. The current study extends previous work from a ram air-driven nacelle (a so-called "swirl tube") to a "pumped" or "fan-driven" configuration and also includes an assessment of a pylon modification to assist a row of vanes in generating a swirling outflow in a more realistic engine environment. Computational fluid dynamics (CFD) simulations and aeroacoustic measurements in an anechoic nozzle test facility are performed to assess the swirl-flow-drag-noise relationship for EAB designs integrated into two NASA high-bypass ratio (HBPR), dual-stream nozzles. Aerodynamic designs have been generated at two levels of complexity: (1) a periodically spaced row of swirl vanes in the fan flowpath (the "simple" case), and (2) an asymmetric row of swirl vanes in conjunction with a deflected trailing edge pylon in a more realistic engine geometry (the "installed" case). CFD predictions and experimental measurements reveal that swirl angle, drag, and jet noise increase monotonically but approach noise simulations suggest that an optimal EAB deployment may be found by carefully trading any jet noise penalty with a trajectory or aerodynamic configuration change to reduce perceived noise on the ground. Constant speed, steep approach flyover noise predictions for a single-aisle, twin-engine tube-and-wing aircraft suggest a maximum reduction of 3 dB of peak tone-corrected perceived noise level (PNLT) and up to 1.8 dB effective perceived noise level (EPNL). Approximately 1 dB less maximum benefit on each metric is predicted for a next-generation hybrid wing/body aircraft in a similar scenario.
Date issued
2013-09
URI
http://hdl.handle.net/1721.1/115052
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Journal of Turbomachinery
Publisher
ASME International
Citation
Shah, P. et al. “Drag Management in High Bypass Turbofan Nozzles for Quiet Approach Applications.” Journal of Turbomachinery 136, 2 (September 2013): 021009 © 2014 ASME
Version: Final published version
ISSN
0889-504X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.