MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Recent Advances in Scaling Up Gaussian Process Predictive Models for Large Spatiotemporal Data

Author(s)
Low, Kian Hsiang; Chen, Jie; Hoang, Trong Nghia; Xu, Nuo; Jaillet, Patrick
Thumbnail
DownloadJaillet_Recent Advances in Scaling up Gaussian Process.pdf (799.4Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The expressive power of Gaussian process (GP) models comes at a cost of poor scalability in the size of the data. To improve their scalability, this paper presents an overview of our recent progress in scaling up GP models for large spatiotemporally correlated data through parallelization on clusters of machines, online learning, and nonmyopic active sensing/learning.
Date issued
2015-11
URI
http://hdl.handle.net/1721.1/115059
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Dynamic Data-Driven Environmental Systems Science
Publisher
Springer-Verlag
Citation
Low, Kian Hsiang, Jie Chen, Trong Nghia Hoang, Nuo Xu, and Patrick Jaillet. “Recent Advances in Scaling Up Gaussian Process Predictive Models for Large Spatiotemporal Data.” Lecture Notes in Computer Science (2015): 167–181.
Version: Author's final manuscript
ISBN
978-3-319-25137-0
978-3-319-25138-7
ISSN
0302-9743
1611-3349

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.