MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Integration of systems biology with organs-on-chips to humanize therapeutic development

Author(s)
Clark, Amanda M.; Wells, Alan; Edington, Collin D; Cirit, Murat; Chen, Wen Li; Trumper, David L; Griffith, Linda G; ... Show more Show less
Thumbnail
Download1006113.pdf (257.1Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
"Mice are not little people" - a refrain becoming louder as the gaps between animal models and human disease become more apparent. At the same time, three emerging approaches are headed toward integration: powerful systems biology analysis of cell-cell and intracellular signaling networks in patient-derived samples; 3D tissue engineered models of human organ systems, often made from stem cells; and micro-fluidic and meso-fluidic devices that enable living systems to be sustained, perturbed and analyzed for weeks in culture. Integration of these rapidly moving fields has the potential to revolutionize development of therapeutics for complex, chronic diseases, including those that have weak genetic bases and substantial contributions from gene-environment interactions. Technical challenges in modeling complex diseases with "organs on chips" approaches include the need for relatively large tissue masses and organ-organ cross talk to capture systemic effects, such that current microfluidic formats often fail to capture the required scale and complexity for interconnected systems. These constraints drive development of new strategies for designing in vitro models, including perfusing organ models, as well as "mesofluidic" pumping and circulation in platforms connecting several organ systems, to achieve the appropriate physiological relevance. Keywords: organs-on-chips; 3D liver culture; perfusion; drug development; inflammation; organ crosstalk; tissue chip; intestine
Date issued
2017-02
URI
http://hdl.handle.net/1721.1/115077
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Microfluidics, BioMEMS, and Medical Microsystems XV
Publisher
SPIE
Citation
Edington, Collin D. et al. “Integration of Systems Biology with Organs-on-Chips to Humanize Therapeutic Development.” Edited by Bonnie L. Gray and Holger Becker. Microfluidics, BioMEMS, and Medical Microsystems XV, January - February 2017, San Francisco, California, USA, February 2017 © 2017 SPIE
Version: Final published version
ISSN
0277-786X
1996-756X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.