Show simple item record

dc.contributor.authorLiu, Yun
dc.contributor.authorFerralis, Nicola
dc.contributor.authorBryndzia, L. Taras
dc.contributor.authorGrossman, Jeffrey C.
dc.date.accessioned2018-04-30T15:42:06Z
dc.date.available2018-04-30T15:42:06Z
dc.date.issued2016-02
dc.date.submitted2016-02
dc.identifier.issn0008-6223
dc.identifier.urihttp://hdl.handle.net/1721.1/115091
dc.description.abstractRapid, non-destructive characterization of molecular level chemistry for organic matter (OM) is experimentally challenging. Raman spectroscopy is one of the most widely used techniques for non-destructive chemical characterization, although it currently does not provide detailed identification of molecular components in OM, due to the combination of diffraction-limited spatial resolution and poor applicability of peak-fitting algorithms. Here, we develop a genome-inspired collective molecular structure fingerprinting approach, which utilizes ab initio calculations and data mining techniques to extract molecular level chemistry from the Raman spectra of OM. We illustrate the power of such an approach by identifying representative molecular fingerprints in OM, for which the molecular chemistry is to date inaccessible using non-destructive characterization techniques. Chemical properties such as aromatic cluster size distribution and H/C ratio can now be quantified directly using the identified molecular fingerprints. Our approach will enable non-destructive identification of chemical signatures with their correlation to the preservation of biosignatures in OM, accurate detection and quantification of environmental contamination, as well as objective assessment of OM with respect to their chemical contents.en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.carbon.2016.02.017en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceNicola Ferralisen_US
dc.titleGenome-inspired molecular identification in organic matter via Raman spectroscopyen_US
dc.typeArticleen_US
dc.identifier.citationLiu, Yun, Nicola Ferralis, L. Taras Bryndzia, and Jeffrey C. Grossman. “Genome-Inspired Molecular Identification in Organic Matter via Raman Spectroscopy.” Carbon 101 (May 2016): 361–367 © 2016 Elsevier Ltden_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.approverFerralis, Nicolaen_US
dc.contributor.mitauthorLiu, Yun
dc.contributor.mitauthorFerralis, Nicola
dc.contributor.mitauthorGrossman, Jeffrey C.
dc.relation.journalCarbonen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLiu, Yun; Ferralis, Nicola; Bryndzia, L. Taras; Grossman, Jeffrey C.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1630-4052
dc.identifier.orcidhttps://orcid.org/0000-0003-4148-2424
dc.identifier.orcidhttps://orcid.org/0000-0003-1281-2359
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record