dc.contributor.author | Fennell, John Francis | |
dc.contributor.author | Liu, Sophie | |
dc.contributor.author | Azzarelli, Joseph M. | |
dc.contributor.author | Weis, Jonathan Garrett | |
dc.contributor.author | Rochat, Sebastien | |
dc.contributor.author | Mirica, Katherine | |
dc.contributor.author | Ravnsbaek, Jens Bomholdt | |
dc.contributor.author | Swager, Timothy M | |
dc.date.accessioned | 2018-04-30T16:54:31Z | |
dc.date.available | 2018-04-30T16:54:31Z | |
dc.date.issued | 2015-12 | |
dc.identifier.issn | 1433-7851 | |
dc.identifier.issn | 1521-3773 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/115094 | |
dc.description.abstract | Chemiresistive sensors are becoming increasingly important as they offer an inexpensive option to conventional analytical instrumentation, they can be readily integrated into electronic devices, and they have low power requirements. Nanowires (NWs) are a major theme in chemosensor development. High surface area, interwire junctions, and restricted conduction pathways give intrinsically high sensitivity and new mechanisms to transduce the binding or action of analytes. This Review details the status of NW chemosensors with selected examples from the literature. We begin by proposing a principle for understanding electrical transport and transduction mechanisms in NW sensors. Next, we offer the reader a review of device performance parameters. Then, we consider the different NW types followed by a summary of NW assembly and different device platform architectures. Subsequently, we discuss NW functionalization strategies. Finally, we propose future developments in NW sensing to address selectivity, sensor drift, sensitivity, response analysis, and emerging applications. | en_US |
dc.language.iso | en_US | |
dc.publisher | Wiley Blackwell | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1002/anie.201505308 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | Prof. Swager via Erja Kajosalo | en_US |
dc.title | Nanowire Chemical/Biological Sensors: Status and a Roadmap for the Future | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Fennell, John F. “Nanowire Chemical/Biological Sensors: Status and a Roadmap for the Future.” Angewandte Chemie International Edition 55, 4 (December 2015): 1266–1281 © 2015 Wiley-VCH Verlag | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Chemistry | en_US |
dc.contributor.approver | Swager, Timothy M | en_US |
dc.contributor.mitauthor | Fennell, John Francis | |
dc.contributor.mitauthor | Liu, Sophie | |
dc.contributor.mitauthor | Azzarelli, Joseph M. | |
dc.contributor.mitauthor | Weis, Jonathan Garrett | |
dc.contributor.mitauthor | Rochat, Sebastien | |
dc.contributor.mitauthor | Mirica, Katherine | |
dc.contributor.mitauthor | Ravnsbaek, Jens Bomholdt | |
dc.contributor.mitauthor | Swager, Timothy M | |
dc.relation.journal | Angewandte Chemie International Edition | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Fennell, John F.; Liu, Sophie F.; Azzarelli, Joseph M.; Weis, Jonathan G.; Rochat, Sébastien; Mirica, Katherine A.; Ravnsbaek, Jens B.; Swager, Timothy M. | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0003-4546-5373 | |
dc.identifier.orcid | https://orcid.org/0000-0002-2319-0826 | |
dc.identifier.orcid | https://orcid.org/0000-0001-8646-9632 | |
mit.license | OPEN_ACCESS_POLICY | en_US |