MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Impact of Carrier Delocalization and Interfacial Electric Field Fluctuations on Organic Photovoltaics

Author(s)
Kohn, Alexander Wolfe; McMahon, David Paul; Wen, Shuhao; Van Voorhis, Troy
Thumbnail
DownloadKohn17JPCC.pdf (3.894Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Organic photovoltaic (OPV) devices hold a great deal of promise for the emerging solar market. However, to unlock this promise, it is necessary to understand how OPV devices generate free charges. Here, we analyze the energetics and charge delocalization of the interfacial charges in poly(p-phenylenevinylene) (PPV)/[6,6]-phenyl-C₆₁-butyric acid methyl ester (PCBM) and poly(3-hexylthiophene-2,5-diyl) (P3HT)/PCBM devices. We find that, in the PPV system, the interface does not produce molecular disorder, but an interfacial electric field is formed upon the inclusion of environmental polarization that promotes charge separation. In contrast, the P3HT system shows a significant driving force for charge separation due to interfacial disorder confining the hole. However, this feature is overpowered by the polarization of the electronic environment, which generates a field that inhibits charge separation. In the two systems studied herein, electrostatic effects dominate charge separation, overpowering interfacially induced disorder. This suggests that, when balancing polymeric order with electrostratic effects, the latter should take priority.
Date issued
2017-12
URI
http://hdl.handle.net/1721.1/115096
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
Journal of Physical Chemistry C
Publisher
American Chemical Society (ACS)
Citation
Kohn, Alexander W. et al. “The Impact of Carrier Delocalization and Interfacial Electric Field Fluctuations on Organic Photovoltaics.” The Journal of Physical Chemistry C 121, 48 (November 2017): 26629–26636 © 2017 American Chemical Society
Version: Author's final manuscript
ISSN
1932-7447
1932-7455

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.