Show simple item record

dc.contributor.authorMavros, Michael George
dc.contributor.authorShepherd, James J
dc.contributor.authorTsuchimochi, Takashi
dc.contributor.authorMcIsaac, Alexandra
dc.contributor.authorVan Voorhis, Troy
dc.date.accessioned2018-04-30T17:52:29Z
dc.date.available2018-04-30T17:52:29Z
dc.date.issued2017-07
dc.date.submitted2017-03
dc.identifier.issn1932-7447
dc.identifier.issn1932-7455
dc.identifier.urihttp://hdl.handle.net/1721.1/115103
dc.description.abstractComputational screens for oxygen evolution reaction (OER) catalysts based on Sabatier analysis have seen great success in recent years; however, the concept of using chemical descriptors to form a reaction coordinate has not been put under scrutiny for complex systems. In this paper, we examine critically the use of chemical descriptors as a method for conducting catalytic screens. Applying density functional theory calculations to a two-center metal oxide model system, we show that the Sabatier analysis is quite successful for predicting activities and capturing the chemical periodic trends expected for the first-row transition metal series, independent of the proposed mechanism. We then extend this analysis to heterodimer metallic systems—metal oxide catalysts with two different catalytically active metal centers—and find signs that the Sabatier analysis may not hold for these more complex systems. By performing a principal component analysis on the computed redox potentials, we show (1) that a single chemical descriptor inadequately describes heterodimer overpotentials and (2) mixed-metal overpotentials cannot be predicted using only pure-metal redox potentials. We believe that the analysis presented in this article shows a need to move beyond the simple chemical descriptor picture when studying more complex mixed metal oxide OER catalysts.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CHE-1464804)en_US
dc.language.isoen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttps://pubs.acs.org/doi/10.1021/acs.jpcc.7b02424en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceProf. Van Voorhis via Erja Kajosaloen_US
dc.titleComputational Design Principles of Two-Center First-Row Transition Metal Oxide Oxygen Evolution Catalystsen_US
dc.typeArticleen_US
dc.identifier.citationMavros, Michael G. et al. “Computational Design Principles of Two-Center First-Row Transition Metal Oxide Oxygen Evolution Catalysts.” The Journal of Physical Chemistry C 121, 29 (July 2017): 15665–15674 © 2017 American Chemical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.approverVan Voorhis, Troyen_US
dc.contributor.mitauthorMavros, Michael George
dc.contributor.mitauthorShepherd, James J
dc.contributor.mitauthorTsuchimochi, Takashi
dc.contributor.mitauthorMcIsaac, Alexandra
dc.contributor.mitauthorVan Voorhis, Troy
dc.relation.journalJournal of Physical Chemistry Cen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMavros, Michael G.; Shepherd, James J.; Tsuchimochi, Takashi; McIsaac, Alexandra R.; Van Voorhis, Troyen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7499-1017
dc.identifier.orcidhttps://orcid.org/0000-0002-6164-485X
dc.identifier.orcidhttps://orcid.org/0000-0001-7111-0176
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record