Show simple item record

dc.contributor.authorLanz, Nicholas D.
dc.contributor.authorLee, Kyung-Hoon
dc.contributor.authorBooker, Squire J.
dc.contributor.authorMcLaughlin, Martin I.
dc.contributor.authorGoldman, Peter John
dc.contributor.authorDrennan, Catherine L.
dc.date.accessioned2018-05-01T17:31:52Z
dc.date.available2018-05-01T17:31:52Z
dc.date.issued2016-08
dc.date.submitted2016-03
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://hdl.handle.net/1721.1/115133
dc.description.abstractLipoyl synthase (LipA) catalyzes the insertion of two sulfur atoms at the unactivated C6 and C8 positions of a protein-bound octanoyl chain to produce the lipoyl cofactor. To activate its substrate for sulfur insertion, LipA uses a [4Fe-4S] cluster and S-adenosylmethionine (AdoMet) radical chemistry; the remainder of the reaction mechanism, especially the source of the sulfur, has been less clear. One controversial proposal involves the removal of sulfur from a second (auxiliary) [4Fe-4S] cluster on the enzyme, resulting in destruction of the cluster during each round of catalysis. Here, we present two high-resolution crystal structures of LipA from Mycobacterium tuberculosis: one in its resting state and one at an intermediate state during turnover. In the resting state, an auxiliary [4Fe-4S] cluster has an unusual serine ligation to one of the irons. After reaction with an octanoyllysine-containing 8-mer peptide substrate and 1 eq AdoMet, conditions that allow for the first sulfur insertion but not the second insertion, the serine ligand dissociates from the cluster, the iron ion is lost, and a sulfur atom that is still part of the cluster becomes covalently attached to C6 of the octanoyl substrate. This intermediate structure provides a clear picture of iron-sulfur cluster destruction in action, supporting the role of the auxiliary cluster as the sulfur source in the LipA reaction and describing a radical strategy for sulfur incorporation into completely unactivated substrates. Keywords: iron–sulfur cluster; radical SAM enzyme; lipoic aciden_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant MCB-0543833)en_US
dc.publisherNational Academy of Sciences (U.S.)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/PNAS.1602486113en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceNational Academy of Sciencesen_US
dc.titleCrystallographic snapshots of sulfur insertion by lipoyl synthaseen_US
dc.typeArticleen_US
dc.identifier.citationMcLaughlin, Martin I. et al. “Crystallographic Snapshots of Sulfur Insertion by Lipoyl Synthase.” Proceedings of the National Academy of Sciences 113, 34 (August 2016): 9446–9450 © 2016 National Academy of Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.mitauthorMcLaughlin, Martin I.
dc.contributor.mitauthorGoldman, Peter John
dc.contributor.mitauthorDrennan, Catherine L.
dc.relation.journalProceedings of the National Academy of Sciencesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-04-13T19:05:11Z
dspace.orderedauthorsMcLaughlin, Martin I.; Lanz, Nicholas D.; Goldman, Peter J.; Lee, Kyung-Hoon; Booker, Squire J.; Drennan, Catherine L.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5486-2755
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record