Show simple item record

dc.contributor.authorWolpert, David H.
dc.contributor.authorLam, Remi Roger Alain Paul
dc.contributor.authorWillcox, Karen E
dc.date.accessioned2018-05-02T15:29:40Z
dc.date.available2018-05-02T15:29:40Z
dc.date.issued2016-12
dc.identifier.urihttp://hdl.handle.net/1721.1/115164
dc.description.abstractWe consider the problem of optimizing an expensive objective function when a finite budget of total evaluations is prescribed. In that context, the optimal solution strategy for Bayesian optimization can be formulated as a dynamic programming instance. This results in a complex problem with uncountable, dimension-increasing state space and an uncountable control space. We show how to approximate the solution of this dynamic programming problem using rollout, and propose rollout heuristics specifically designed for the Bayesian optimization setting. We present numerical experiments showing that the resulting algorithm for optimization with a finite budget outperforms several popular Bayesian optimization algorithms.en_US
dc.publisherNeural Information Processing Systems Foundationen_US
dc.relation.isversionofhttps://papers.nips.cc/paper/6188-bayesian-optimization-with-a-finite-budget-an-approximate-dynamic-programming-approachen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceNeural Information Processing Systems (NIPS)en_US
dc.titleBayesian optimization with a finite budget: An approximate dynamic programming approachen_US
dc.typeArticleen_US
dc.identifier.citationLam, Rem, Karen Willcox, and David H. Wolpert. "Bayesian Optimization with a Finite Budget: An Approximate Dynamic Programming Approach." Advances in Neural Information Processing Systems 29 (NIPS 2016), 5-12 December, 2016, Barcelona, Spain, Neural Information Processing Systems Foundation, 2016. © 2016 NIPS Foundationen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorLam, Remi
dc.contributor.mitauthorWillcox, Karen E
dc.relation.journalAdvances in Neural Information Processing Systems 29 (NIPS 2016)en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-04-17T17:25:15Z
dspace.orderedauthorsLam, Remi; Willcox, Karen; Wolpert, David H.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4222-5358
dc.identifier.orcidhttps://orcid.org/0000-0003-2156-9338
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record