Show simple item record

dc.contributor.authorLangs, Georg
dc.contributor.authorGolland, Polina
dc.contributor.authorGhosh, Satrajit S
dc.date.accessioned2018-05-02T18:37:54Z
dc.date.available2018-05-02T18:37:54Z
dc.date.issued2015-11
dc.identifier.isbn978-3-319-24570-6
dc.identifier.isbn978-3-319-24571-3
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/115187
dc.description.abstractThe alignment of brain imaging data for functional neuroimaging studies is challenging due to the discrepancy between correspondence of morphology, and equivalence of functional role. In this paper we map functional activation areas across individuals by a multi-atlas label fusion algorithm in a functional space. We learn the manifold of resting-state fMRI signals in each individual, and perform manifold alignment in an embedding space. We then transfer activation predictions from a source population to a target subject via multi-atlas label fusion. The cost function is derived from the aligned manifolds, so that the resulting correspondences are derived based on the similarity of intrinsic connectivity architecture. Experiments show that the resulting label fusion predicts activation evoked by various experiment conditions with higher accuracy than relying on morphological alignment. Interestingly, the distribution of this gain is distributed heterogeneously across the cortex, and across tasks. This offers insights into the relationship between intrinsic connectivity, morphology and task activation. Practically, the mechanism can serve as prior, and provides an avenue to infer task-related activation in individuals for whom only resting data is available. Keywords: Functional Connectivity, Cortical Surface, Task Activation, Target Subject, Intrinsic Connectivityen_US
dc.description.sponsorshipCongressionally Directed Medical Research Programs (U.S.) (Grant PT100120)en_US
dc.description.sponsorshipEunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (R01HD067312)en_US
dc.description.sponsorshipNeuroimaging Analysis Center (U.S.) (P41EB015902)en_US
dc.description.sponsorshipOesterreichische Nationalbank (14812)en_US
dc.description.sponsorshipOesterreichische Nationalbank (15929)en_US
dc.description.sponsorshipSeventh Framework Programme (European Commission) (FP7 2012-PIEF-GA-33003)en_US
dc.language.isoen_US
dc.publisherSpringeren_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-319-24571-3_38en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titlePredicting Activation Across Individuals with Resting-State Functional Connectivity Based Multi-Atlas Label Fusionen_US
dc.typeArticleen_US
dc.identifier.citationLangs, Georg, et al. “Predicting Activation Across Individuals with Resting-State Functional Connectivity Based Multi-Atlas Label Fusion.” Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015, edited by Nassir Navab et al., vol. 9350, Springer International Publishing, 2015, pp. 313–20.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.mitauthorLangs, Georg
dc.contributor.mitauthorGolland, Polina
dc.contributor.mitauthorGhosh, Satrajit S
dc.relation.journalMedical Image Computing and Computer-Assisted Intervention -- MICCAI 2015en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsLangs, Georg; Golland, Polina; Ghosh, Satrajit S.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2516-731X
dc.identifier.orcidhttps://orcid.org/0000-0002-5312-6729
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record