Show simple item record

dc.contributor.authorGrenier, Philippe
dc.contributor.authorMahmoudi, Morteza
dc.contributor.authorAppel, Eric A.
dc.contributor.authorLim, Jong-Min
dc.contributor.authorKarnik, Rohit
dc.contributor.authorFarokhzad, Omid C.
dc.contributor.authorBertrand, Nicolas
dc.contributor.authorMartins Lima, Eliana
dc.contributor.authorDormont, Flavio
dc.contributor.authorLanger, Robert S
dc.date.accessioned2018-05-02T19:33:09Z
dc.date.available2018-05-02T19:33:09Z
dc.date.issued2017-10
dc.date.submitted2017-03
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/115195
dc.description.abstractIn vitro incubation of nanomaterials with plasma offer insights on biological interactions, but cannot fully explain the in vivo fate of nanomaterials. Here, we use a library of polymer nanoparticles to show how physicochemical characteristics influence blood circulation and early distribution. For particles with different diameters, surface hydrophilicity appears to mediate early clearance. Densities above a critical value of approximately 20 poly(ethylene glycol) chains (MW 5 kDa) per 100 nm 2 prolong circulation times, irrespective of size. In knockout mice, clearance mechanisms are identified for nanoparticles with low and high steric protection. Studies in animals deficient in the C3 protein showed that complement activation could not explain differences in the clearance of nanoparticles. In nanoparticles with low poly(ethylene glycol) coverage, adsorption of apolipoproteins can prolong circulation times. In parallel, the low-density-lipoprotein receptor plays a predominant role in the clearance of nanoparticles, irrespective of poly(ethylene glycol) density. These results further our understanding of nanopharmacology.en_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/S41467-017-00600-Wen_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNature Communicationsen_US
dc.titleMechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokineticsen_US
dc.typeArticleen_US
dc.identifier.citationBertrand, Nicolas et al. “Mechanistic Understanding of in Vivo Protein Corona Formation on Polymeric Nanoparticles and Impact on Pharmacokinetics.” Nature Communications 8, 1 (October 2017): 777 © 2017 The Author(s)en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorBertrand, Nicolas
dc.contributor.mitauthorMartins Lima, Eliana
dc.contributor.mitauthorDormont, Flavio
dc.contributor.mitauthorLanger, Robert S
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-04-27T14:29:28Z
dspace.orderedauthorsBertrand, Nicolas; Grenier, Philippe; Mahmoudi, Morteza; Lima, Eliana M.; Appel, Eric A.; Dormont, Flavio; Lim, Jong-Min; Karnik, Rohit; Langer, Robert; Farokhzad, Omid C.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4255-0492
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record