Show simple item record

dc.contributor.authorLeung, Calvin
dc.contributor.authorBrown, Amy
dc.contributor.authorNguyen, Hien
dc.contributor.authorFriedman, Andrew S.
dc.contributor.authorGallicchio, Jason
dc.contributor.authorKaiser, David I.
dc.date.accessioned2018-05-03T20:51:54Z
dc.date.available2018-05-03T20:51:54Z
dc.date.issued2018-04
dc.date.submitted2017-06
dc.identifier.issn2469-9926
dc.identifier.issn2469-9934
dc.identifier.urihttp://hdl.handle.net/1721.1/115234
dc.description.abstractPhotons from distant astronomical sources can be used as a classical source of randomness to improve fundamental tests of quantum nonlocality, wave-particle duality, and local realism through Bell's inequality and delayed-choice quantum eraser tests inspired by Wheeler's cosmic-scale Mach-Zehnder interferometer gedanken experiment. Such sources of random numbers may also be useful for information-theoretic applications such as key distribution for quantum cryptography. Building on the design of an astronomical random number generator developed for the recent cosmic Bell experiment [Handsteiner et al. Phys. Rev. Lett. 118, 060401 (2017)PRLTAO0031-900710.1103/PhysRevLett.118.060401], in this paper we report on the design and characterization of a device that, with 20-nanosecond latency, outputs a bit based on whether the wavelength of an incoming photon is greater than or less than ≈700 nm. Using the one-meter telescope at the Jet Propulsion Laboratory Table Mountain Observatory, we generated random bits from astronomical photons in both color channels from 50 stars of varying color and magnitude, and from 12 quasars with redshifts up to z=3.9. With stars, we achieved bit rates of ∼1×10⁶Hz/m², limited by saturation of our single-photon detectors, and with quasars of magnitudes between 12.9 and 16, we achieved rates between ∼10² and 2×10³Hz/m². For bright quasars, the resulting bitstreams exhibit sufficiently low amounts of statistical predictability as quantified by the mutual information. In addition, a sufficiently high fraction of bits generated are of true astronomical origin in order to address both the locality and freedom-of-choice loopholes when used to set the measurement settings in a test of the Bell-CHSH inequality.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant PHY-1541160)en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevA.97.042120en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0en_US
dc.sourceAmerican Physical Societyen_US
dc.titleAstronomical random numbers for quantum foundations experimentsen_US
dc.typeArticleen_US
dc.identifier.citationLeung, Calvin et al. "Astronomical random numbers for quantum foundations experiments." Physical Review A 97, 4 (April 2018): 042120en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Program in History, Anthropology, and Science, Technology, and Societyen_US
dc.contributor.mitauthorKaiser, David I.
dc.relation.journalPhysical Review Aen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-04-24T18:00:13Z
dc.language.rfc3066en
dspace.orderedauthorsLeung, Calvin; Brown, Amy; Nguyen, Hien; Friedman, Andrew S.; Kaiser, David I.; Gallicchio, Jasonen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5054-6744
dspace.mitauthor.errortrue
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record