MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Statistical modeling of aircraft takeoff weight

Author(s)
Chati, Yashovardhan Sushil; Balakrishnan, Hamsa
Thumbnail
DownloadChatiBalakrishnanATM2017.pdf (390.7Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The Takeoff Weight (TOW) of an aircraft is an important aspect of aircraft performance, and impacts a large number of characteristics, ranging from the trajectory to the fuel burn of the flight. Due to its dependence on factors such as the passenger and cargo load factors as well as operating strategies, the TOW of a particular flight is generally not available to entities outside of the operating airline. The above observations motivate the development of accurate TOW estimates that can be used for fuel burn estimation or trajectory prediction. This paper proposes a statistical approach based on Gaussian Process Regression (GPR) to determine both a mean estimate of the TOW and the associated confidence interval, using observed data from the takeoff ground roll. The predictor variables are chosen by considering both their ease of availability and the underlying aircraft dynamics. The model development and validation are conducted using Flight Data Recorder archives, which also provide ground truth data. The proposed models are found to have a mean TOW error of 3%, averaged across eight different aircraft types, resulting in a nearly 50% smaller error than the models in the Aircraft Noise and Performance (ANP) database. In contrast to the ANP database which provides only point estimates of the TOW, the GPR models quantify the uncertainty in the estimates by providing a probability distribution. Finally, the developed models are used to estimate aircraft fuel flow rate during ascent. The TOW estimated by the GPR models is used as an input to the fuel flow rate estimation. The proposed statistical models of the TOW are shown to enable a better quantification of uncertainty in the fuel flow rate as compared to the deterministic ANP models, or to models that do not use the TOW as an explicit input.
Date issued
2017-06
URI
http://hdl.handle.net/1721.1/115247
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Twelfth USA/Europe Air Traffic Management Research and Development Seminar (ATM 2017)
Publisher
ATM
Citation
Chati, Yashovardhan S. and Hamsa Balakrishnan. "Statistical Modeling of Aircraft Takeoff Weight." Twelfth USA/Europe Air Traffic Management Research and Development Seminar (ATM 2017), 26-30 June, 2017, Seattle, Washington, ATM, 2017.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.