An irreversible local Markov chain that preserves the six vertex model on a torus
Author(s)
Borodin, Alexei; Bufetov, Alexey
Download1509.05070.pdf (750.6Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
We construct an irreversible local Markov dynamics on configurations of up-right paths on a discrete two-dimensional torus, that preserves the Gibbs measures for the six vertex model. An additional feature of the dynamics is a conjecturally nontrivial drift of the height function.
Date issued
2017-02Department
Massachusetts Institute of Technology. Department of MathematicsJournal
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
Publisher
Institute of Mathematical Statistics
Citation
Borodin, Alexei, and Alexey Bufetov. “An Irreversible Local Markov Chain That Preserves the Six Vertex Model on a Torus.” Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, vol. 53, no. 1, Feb. 2017, pp. 451–63.
Version: Original manuscript
ISSN
0246-0203