Show simple item record

dc.contributor.authorCaplan, Philip Claude
dc.contributor.authorHaimes, Robert
dc.contributor.authorDarmofal, David L
dc.contributor.authorGalbraith, Marshall C.
dc.date.accessioned2018-05-07T19:56:13Z
dc.date.available2018-05-07T19:56:13Z
dc.date.issued2017-10
dc.identifier.issn1877-7058
dc.identifier.urihttp://hdl.handle.net/1721.1/115254
dc.description.abstractWe develop a dimension-independent, Delaunay-based anisotropic mesh generation algorithm suitable for integration with adaptive numerical solvers. As such, the mesh produced by our algorithm conforms to an anisotropic metric prescribed by the solver as well as the domain geometry, given as a piecewise smooth complex. Motivated by the work of Lévy and Dassi [10-12,20], we use a discrete manifold embedding algorithm to transform the anisotropic problem to a uniform one. This work differs from previous approaches in several ways. First, the embedding algorithm is driven by a Riemannian metric field instead of the Gauss map, lending itself to general anisotropic mesh generation problems. Second we describe our method for computing restricted Voronoi diagrams in a dimension-independent manner which is used to compute constrained centroidal Voronoi tessellations. In particular, we compute restricted Voronoi simplices using exact arithmetic and use data structures based on convex polytope theory. Finally, since adaptive solvers require geometry-conforming meshes, we offer a Steiner vertex insertion algorithm for ensuring the extracted dual Delaunay triangulation is homeomorphic to the input geometries. The two major contributions of this paper are: a method for isometrically embedding arbitrary mesh-metric pairs in higher dimensional Euclidean spaces and a dimension-independent vertex insertion algorithm for producing geometry-conforming Delaunay meshes. The former is demonstrated on a two-dimensional anisotropic problem whereas the latter is demonstrated on both 3d and 4d problems. Keywords: Anisotropic mesh generation; metric; Nash embedding theorem; isometric; geometry-conforming; restricted Voronoi diagram; constrained centroidal Voronoi tessellation; Steiner vertices; dimension-independenten_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.PROENG.2017.09.798en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceElsevieren_US
dc.titleAnisotropic geometry-conforming d-simplicial meshing via isometric embeddingsen_US
dc.typeArticleen_US
dc.identifier.citationCaplan, Philip Claude, et al. “Anisotropic Geometry-Conforming d-Simplicial Meshing via Isometric Embeddings.” Procedia Engineering, vol. 203, 2017, pp. 141–53. © 2017 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorCaplan, Philip Claude
dc.contributor.mitauthorHaimes, Robert
dc.contributor.mitauthorDarmofal, David L
dc.contributor.mitauthorGalbraith, Marshall C.
dc.relation.journalProcedia Engineeringen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-03-19T14:34:09Z
dspace.orderedauthorsCaplan, Philip Claude; Haimes, Robert; Darmofal, David L.; Galbraith, Marshall C.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5652-9913
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record