Show simple item record

dc.contributor.authorCrandall, Jacob W.
dc.contributor.authorOudah, Mayada
dc.contributor.authorTennom, Mayada
dc.contributor.authorIshowo-Oloko, Fatimah
dc.contributor.authorAbdallah, Sherief
dc.contributor.authorBonnefon, Jean-François
dc.contributor.authorCebrian, Manuel
dc.contributor.authorShariff, Azim
dc.contributor.authorGoodrich, Michael A.
dc.contributor.authorRahwan, Iyad
dc.date.accessioned2018-05-09T16:11:58Z
dc.date.available2018-05-09T16:11:58Z
dc.date.issued2018-01
dc.date.submitted2017-08
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/115259
dc.description.abstractSince Alan Turing envisioned artificial intelligence, technical progress has often been measured by the ability to defeat humans in zero-sum encounters (e.g., Chess, Poker, or Go). Less attention has been given to scenarios in which human-machine cooperation is beneficial but non-trivial, such as scenarios in which human and machine preferences are neither fully aligned nor fully in conflict. Cooperation does not require sheer computational power, but instead is facilitated by intuition, cultural norms, emotions, signals, and pre-evolved dispositions. Here, we develop an algorithm that combines a state-of-the-art reinforcement-learning algorithm with mechanisms for signaling. We show that this algorithm can cooperate with people and other algorithms at levels that rival human cooperation in a variety of two-player repeated stochastic games. These results indicate that general human-machine cooperation is achievable using a non-trivial, but ultimately simple, set of algorithmic mechanisms.en_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41467-017-02597-8en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNature Communicationsen_US
dc.titleCooperating with machinesen_US
dc.typeArticleen_US
dc.identifier.citationCrandall, Jacob W. et al. “Cooperating with Machines.” Nature Communications 9, 1 (January 2018): 233 © 2018 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.contributor.mitauthorCebrian, Manuel
dc.contributor.mitauthorRahwan, Iyad
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-04-27T13:17:40Z
dspace.orderedauthorsCrandall, Jacob W.; Oudah, Mayada; Tennom, Mayada; Ishowo-Oloko, Fatimah; Abdallah, Sherief; Bonnefon, Jean-François; Cebrian, Manuel; Shariff, Azim; Goodrich, Michael A.; Rahwan, Iyaden_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record