Show simple item record

dc.contributor.authorPereira, Francisco
dc.contributor.authorLou, Bin
dc.contributor.authorRitter, Samuel
dc.contributor.authorGershman, Samuel J.
dc.contributor.authorBotvinick, Matthew
dc.contributor.authorPritchett, Brianna L
dc.contributor.authorKanwisher, Nancy
dc.contributor.authorFedorenko, Evelina G
dc.date.accessioned2018-05-09T18:35:02Z
dc.date.available2018-05-09T18:35:02Z
dc.date.issued2018-03
dc.date.submitted2017-09
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/115267
dc.description.abstractPrior work decoding linguistic meaning from imaging data has been largely limited to concrete nouns, using similar stimuli for training and testing, from a relatively small number of semantic categories. Here we present a new approach for building a brain decoding system in which words and sentences are represented as vectors in a semantic space constructed from massive text corpora. By efficiently sampling this space to select training stimuli shown to subjects, we maximize the ability to generalize to new meanings from limited imaging data. To validate this approach, we train the system on imaging data of individual concepts, and show it can decode semantic vector representations from imaging data of sentences about a wide variety of both concrete and abstract topics from two separate datasets. These decoded representations are sufficiently detailed to distinguish even semantically similar sentences, and to capture the similarity structure of meaning relationships between sentences.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Contract FA8650-14-C-7358)en_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41467-018-03068-4en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNature Communicationsen_US
dc.titleToward a universal decoder of linguistic meaning from brain activationen_US
dc.typeArticleen_US
dc.identifier.citationPereira, Francisco et al.“Toward a Universal Decoder of Linguistic Meaning from Brain Activation.” Nature Communications 9, 1 (March 2018): 963 © 2018 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.mitauthorPritchett, Brianna L
dc.contributor.mitauthorKanwisher, Nancy
dc.contributor.mitauthorFedorenko, Evelina G
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-04-27T15:45:05Z
dspace.orderedauthorsPereira, Francisco; Lou, Bin; Pritchett, Brianna; Ritter, Samuel; Gershman, Samuel J.; Kanwisher, Nancy; Botvinick, Matthew; Fedorenko, Evelinaen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3853-7885
dc.identifier.orcidhttps://orcid.org/0000-0003-3823-514X
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record