MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Controlled Release of Ursodeoxycholic Acid from Pullulan Acetate Nanoparticles to Modulate Glutamate-Induced Excitotoxicity in PC-12 Cells

Author(s)
Yu, Kwang Sik; Oh, Jun Young; Kang, Seong Hee; Lee, Nam Seob; Han, Seung-Yun; Ryu, Ki Hyun; Jeong, Young Gil; Kim, Do Kyung; Kim, Min-Cheol; ... Show more Show less
Thumbnail
DownloadJNM.2018.7130450.pdf (4.083Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
The neuroprotective effects of the ursodeoxycholic acid- (UDCA-) loaded pullulan acetate (PA) (UDCA-PA) nanospheres stabilized by poly(vinyl alcohol) (PVA) were identified by in vitro study. The UDCA-PA nanospheres were constructed by nanoemulsion process. The UDCA-PA nanospheres were analyzed using Fourier transform-infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). Then, the UDCA-PA nanospheres were used to treat PC-12 neuronal cells, which were formerly triggered by glutamate-induced excitotoxicity. As a result, the cells treated with the UDCA-PA nanospheres showed higher survival rate against glutamate-induced excitotoxicity. Furthermore, the UDCA-PA nanospheres decreased immunoreactivity of Annexin V, a membrane marker for apoptotic cells, in PC-12 with glutamate-induced injury. Particularly, the UDCA-PA nanospheres decreased the level of apoptosis-related proteins such as caspase-3. Taken together, the UDCA-PA nanospheres increased neuroprotective effects against glutamate-induced neuronal damage via inhibition of apoptosis at low concentration.
Date issued
2018-03
URI
http://hdl.handle.net/1721.1/115272
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Journal of Nanomaterials
Publisher
Hindawi Publishing Corporation
Citation
Yu, Kwang Sik et al. "Controlled Release of Ursodeoxycholic Acid from Pullulan Acetate Nanoparticles to Modulate Glutamate-Induced Excitotoxicity in PC-12 Cells." Journal of Nanomaterials 2018 (March 2018): 7130450 © 2018 Kwang Sik Yu et al
Version: Final published version
ISSN
1687-4110
1687-4129

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.