Show simple item record

dc.contributor.authorDekel, Tali
dc.contributor.authorOron, Shaul
dc.contributor.authorRubinstein, Michael
dc.contributor.authorAvidan, Shai
dc.contributor.authorFreeman, William T.
dc.date.accessioned2018-05-11T13:52:24Z
dc.date.available2018-05-11T13:52:24Z
dc.date.issued2015-10
dc.date.submitted2015-06
dc.identifier.isbn978-1-4673-6964-0
dc.identifier.urihttp://hdl.handle.net/1721.1/115310
dc.description.abstractWe propose a novel method for template matching in unconstrained environments. Its essence is the Best-Buddies Similarity (BBS), a useful, robust, and parameter-free similarity measure between two sets of points. BBS is based on counting the number of Best-Buddies Pairs (BBPs)-pairs of points in source and target sets, where each point is the nearest neighbor of the other. BBS has several key features that make it robust against complex geometric deformations and high levels of outliers, such as those arising from background clutter and occlusions. We study these properties, provide a statistical analysis that justifies them, and demonstrate the consistent success of BBS on a challenging real-world dataset.en_US
dc.description.sponsorshipIsrael Science Foundation (Grant 1556/10)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (1212849)en_US
dc.description.sponsorshipShell Researchen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/CVPR.2015.7298813en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleBest-Buddies Similarity for robust template matchingen_US
dc.typeArticleen_US
dc.identifier.citationDekel, Tali, et al. "Best-Buddies Similarity for Robust Template Matching." 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 7-12 June, 2015, Boston, Massachusetts, IEEE, 2015, pp. 2021–29.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorDekel, Tali
dc.contributor.mitauthorFreeman, William T.
dc.relation.journal2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsDekel, Tali; Oron, Shaul; Rubinstein, Michael; Avidan, Shai; Freeman, William T.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3703-0783
dc.identifier.orcidhttps://orcid.org/0000-0002-2231-7995
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record