| dc.contributor.author | Dekel, Tali | |
| dc.contributor.author | Oron, Shaul | |
| dc.contributor.author | Rubinstein, Michael | |
| dc.contributor.author | Avidan, Shai | |
| dc.contributor.author | Freeman, William T. | |
| dc.date.accessioned | 2018-05-11T13:52:24Z | |
| dc.date.available | 2018-05-11T13:52:24Z | |
| dc.date.issued | 2015-10 | |
| dc.date.submitted | 2015-06 | |
| dc.identifier.isbn | 978-1-4673-6964-0 | |
| dc.identifier.uri | http://hdl.handle.net/1721.1/115310 | |
| dc.description.abstract | We propose a novel method for template matching in unconstrained environments. Its essence is the Best-Buddies Similarity (BBS), a useful, robust, and parameter-free similarity measure between two sets of points. BBS is based on counting the number of Best-Buddies Pairs (BBPs)-pairs of points in source and target sets, where each point is the nearest neighbor of the other. BBS has several key features that make it robust against complex geometric deformations and high levels of outliers, such as those arising from background clutter and occlusions. We study these properties, provide a statistical analysis that justifies them, and demonstrate the consistent success of BBS on a challenging real-world dataset. | en_US |
| dc.description.sponsorship | Israel Science Foundation (Grant 1556/10) | en_US |
| dc.description.sponsorship | National Science Foundation (U.S.) (1212849) | en_US |
| dc.description.sponsorship | Shell Research | en_US |
| dc.language.iso | en_US | |
| dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.1109/CVPR.2015.7298813 | en_US |
| dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
| dc.source | MIT Web Domain | en_US |
| dc.title | Best-Buddies Similarity for robust template matching | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Dekel, Tali, et al. "Best-Buddies Similarity for Robust Template Matching." 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 7-12 June, 2015, Boston, Massachusetts, IEEE, 2015, pp. 2021–29. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
| dc.contributor.mitauthor | Dekel, Tali | |
| dc.contributor.mitauthor | Freeman, William T. | |
| dc.relation.journal | 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) | en_US |
| dc.eprint.version | Author's final manuscript | en_US |
| dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
| eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
| dspace.orderedauthors | Dekel, Tali; Oron, Shaul; Rubinstein, Michael; Avidan, Shai; Freeman, William T. | en_US |
| dspace.embargo.terms | N | en_US |
| dc.identifier.orcid | https://orcid.org/0000-0003-3703-0783 | |
| dc.identifier.orcid | https://orcid.org/0000-0002-2231-7995 | |
| dspace.mitauthor.error | true | |
| mit.license | OPEN_ACCESS_POLICY | en_US |