Show simple item record

dc.contributor.authorMaji, Subhransu
dc.contributor.authorHazan, Tamir
dc.contributor.authorJaakkola, Tommi S
dc.date.accessioned2018-05-11T14:21:59Z
dc.date.available2018-05-11T14:21:59Z
dc.date.issued2014-04
dc.identifier.urihttp://hdl.handle.net/1721.1/115314
dc.description.abstractWe address the problem of efficiently annotating labels of objects when they are structured. Often the distribution over labels can be described using a joint potential function over the labels for which sampling is provably hard but efficient maximum a-posteriori (MAP) solvers exist. In this setting we develop novel entropy bounds that are based on the expected amount of perturbation to the potential function that is needed to change MAP decisions. By reasoning about the entropy reduction and cost tradeoff, our algorithm actively selects the next annotation task. As an example of our framework we propose a boundary refinement task which can used to obtain pixelaccurate image boundaries much faster than traditional tools by focussing on parts of the image for refinement in a multi-scale manner.en_US
dc.language.isoen_US
dc.publisherPLMRen_US
dc.relation.isversionofhttp://proceedings.mlr.press/v33/#defaulten_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther univ. web domainen_US
dc.titleActive boundary annotation using random MAP perturbationsen_US
dc.typeArticleen_US
dc.identifier.citationMaji, Subhransu, Tamir Hazan, and Tommi Jaakkola. "Active Boundary Annotation using Random MAP Perturbations." Proceedings of the 17th International Conference on Artificial Intelligence and Statistics (AISTATS), 22-25 April, 2014, Reykjavik, Iceland, PMLR, 2014. © The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorJaakkola, Tommi S
dc.relation.journalProceedings of the 17th International Conference on Artificial Intelligence and Statistics (AISTATS)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsMaji, Subhransu; Hazan Tamir Hazan; Jaakkola, Tommien_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2199-0379
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record