Show simple item record

dc.contributor.authorLopez-Rios, Hector
dc.contributor.authorMendoza-Cortes, Jose-L.
dc.contributor.authorFomine, Serguei
dc.contributor.authorPablo Pedro, Ricardo
dc.contributor.authorKong, Jing
dc.contributor.authorVan Voorhis, Troy
dc.contributor.authorDresselhaus, Mildred
dc.date.accessioned2018-05-11T15:26:32Z
dc.date.available2018-05-11T15:26:32Z
dc.date.issued2018-05
dc.date.submitted2018-02
dc.identifier.issn2331-7019
dc.identifier.urihttp://hdl.handle.net/1721.1/115321
dc.description.abstractThis paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. High-performance materials rely on small reorganization energies to facilitate both charge separation and charge transport. Here, we perform density-functional-theory calculations to predict small reorganization energies of rectangular silicene nanoclusters with hydrogen-passivated edges denoted by H-SiNC. We observe that across all geometries, H-SiNCs feature large electron affinities and highly stabilized anionic states, indicating their potential as n-type materials. Our findings suggest that fine-tuning the size of H-SiNCs along the “zigzag” and “armchair” directions may permit the design of novel n-type electronic materials and spintronics devices that incorporate both high electron affinities and very low internal reorganization energies.en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevApplied.9.054012en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleExploring Low Internal Reorganization Energies for Silicene Nanoclustersen_US
dc.typeArticleen_US
dc.identifier.citationPablo-Pedro, Ricardo et al. "Exploring Low Internal Reorganization Energies for Silicene Nanoclusters." Physical Review Applied 9, 5 (May 2018): 054012 © 2018 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorPablo Pedro, Ricardo
dc.contributor.mitauthorKong, Jing
dc.contributor.mitauthorVan Voorhis, Troy
dc.contributor.mitauthorDresselhaus, Mildred
dc.relation.journalPhysical Review Applieden_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-09T18:00:18Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsPablo-Pedro, Ricardo; Lopez-Rios, Hector; Mendoza-Cortes, Jose-L.; Kong, Jing; Fomine, Serguei; Van Voorhis, Troy; Dresselhaus, Mildred S.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4659-1996
dc.identifier.orcidhttps://orcid.org/0000-0003-0551-1208
dc.identifier.orcidhttps://orcid.org/0000-0001-7111-0176
dc.identifier.orcidhttps://orcid.org/0000-0001-8492-2261
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record