MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tardis 2.0

Author(s)
Yu, Xiangyao; Liu, Hongzhe; Zou, Ethan; Devadas, Srinivas
Thumbnail
Downloadtardis2.0.pdf (1.037Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Cache coherence scalability is a big challenge in shared memory systems. Traditional protocols do not scale due to the storage and traffic overhead of cache invalidation. Tardis, a recently proposed coherence protocol, removes cache invalidation using logical timestamps and achieves excellent scalability. The original Tardis protocol, however, only supports the Sequential Consistency (SC) memory model, limiting its applicability. Tardis also incurs extra network traffic on some benchmarks due to renew messages, and has suboptimal performance when the program uses spinning to communicate between threads. In this paper, we address these downsides of Tardis protocol and make it significantly more practical. Specifically, we discuss the architectural, memory system and protocol changes required in order to implement the TSO consistency model on Tardis, and prove that the modified protocol satisfies TSO. We also describe modifications for Partial Store Order (PSO) and Release Consistency (RC). Finally, we propose optimizations for better leasing policies and to handle program spinning. On a set of benchmarks, optimized Tardis improves on a full-map directory protocol in the metrics of performance, storage and network traffic, while being simpler to implement.
Date issued
2016-09
URI
http://hdl.handle.net/1721.1/115327
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the 2016 International Conference on Parallel Architectures and Compilation - PACT '16
Publisher
Association for Computing Machinery (ACM)
Citation
Yu, Xiangyao, et al. Tardis 2.0: "Optimized Time Traveling Coherence for Relaxed Consistency Models." PACT '16 Proceedings of the 2016 International Conference on Parallel Architectures and Compilation, 11-15 September, 2016, Haifa, Israel, ACM Press, 2016, pp. 261–74.
Version: Author's final manuscript
ISSN
978-1-4503-4121-9

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.