Show simple item record

dc.contributor.authorNahum, Adam
dc.contributor.authorRuhman, Yehonatan
dc.contributor.authorVijay, Sagar
dc.contributor.authorHaah, Jeongwan
dc.date.accessioned2018-05-11T17:15:47Z
dc.date.available2018-05-11T17:15:47Z
dc.date.issued2017-07
dc.identifier.issn2160-3308
dc.identifier.urihttp://hdl.handle.net/1721.1/115328
dc.description.abstractCharacterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like (time)[superscript 1/3] and are spatially correlated over a distance ∝(time)[superscript 2/3]. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder. Subject Areas: Condensed Matter Physics, Quantum Information, Statistical Physicsen_US
dc.description.sponsorshipGordon and Betty Moore Foundation (Grant GBMF4303)en_US
dc.description.sponsorshipEngineering and Physical Sciences Research Council (Grant EP/N028678/1)en_US
dc.description.sponsorshipKavli Institute for Theoretical Physics (Graduate Fellows Program)en_US
dc.description.sponsorshipUnited States. Department of Energy. Division of Materials Sciences and Engineering (Award DE-SC0010526)en_US
dc.description.sponsorshipMassachusetts Institute of Technology (MIT Pappalardo Fellowship in Physics)en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevX.7.031016en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0en_US
dc.sourceAmerican Physical Societyen_US
dc.titleQuantum Entanglement Growth under Random Unitary Dynamicsen_US
dc.typeArticleen_US
dc.identifier.citationNahum, Adam, et al. “Quantum Entanglement Growth under Random Unitary Dynamics.” Physical Review X, vol. 7, no. 3, July 2017. © 2018 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorNahum, Adam
dc.contributor.mitauthorRuhman, Yehonatan
dc.contributor.mitauthorVijay, Sagar
dc.contributor.mitauthorHaah, Jeongwan
dc.relation.journalPhysical Review Xen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-07-26T22:00:13Z
dc.language.rfc3066en
dc.rights.holderauthors
dspace.orderedauthorsNahum, Adam; Ruhman, Jonathan; Vijay, Sagar; Haah, Jeongwanen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3488-4532
dc.identifier.orcidhttps://orcid.org/0000-0002-4420-4932
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record