MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimation of functionals of sparse covariance matrices

Author(s)
Fan, Jianqing; Rigollet, Philippe; Wang, Weichen
Thumbnail
Download1408.5087.pdf (672.4Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other Lr norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics.
Date issued
2015-12
URI
http://hdl.handle.net/1721.1/115336
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Annals of Statistics
Publisher
Institute of Mathematical Statistics
Citation
Fan, Jianqing et al. “Estimation of Functionals of Sparse Covariance Matrices.” The Annals of Statistics 43, 6 (December 2015): 2706–2737 © 2015 Institute of Mathematical Statistics
Version: Final published version
ISSN
0090-5364

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.