Show simple item record

dc.contributor.authorYoon, Young Gyu
dc.contributor.authorDai, Peilun
dc.contributor.authorWohlwend, Jeremy
dc.contributor.authorChang, Jae-Byum
dc.contributor.authorMarblestone, Adam Henry
dc.contributor.authorBoyden, Edward
dc.date.accessioned2018-05-14T19:34:32Z
dc.date.available2018-05-14T19:34:32Z
dc.date.issued2017-10
dc.date.submitted2017-08
dc.identifier.issn1662-5188
dc.identifier.urihttp://hdl.handle.net/1721.1/115370
dc.description.abstractWe here introduce and study the properties, via computer simulation, of a candidate automated approach to algorithmic reconstruction of dense neural morphology, based on simulated data of the kind that would be obtained via two emerging molecular technologies—expansion microscopy (ExM) and in-situ molecular barcoding. We utilize a convolutional neural network to detect neuronal boundaries from protein-tagged plasma membrane images obtained via ExM, as well as a subsequent supervoxel-merging pipeline guided by optical readout of information-rich, cell-specific nucleic acid barcodes. We attempt to use conservative imaging and labeling parameters, with the goal of establishing a baseline case that points to the potential feasibility of optical circuit reconstruction, leaving open the possibility of higher-performance labeling technologies and algorithms. We find that, even with these conservative assumptions, an all-optical approach to dense neural morphology reconstruction may be possible via the proposed algorithmic framework. Future work should explore both the design-space of chemical labels and barcodes, as well as algorithms, to ultimately enable routine, high-performance optical circuit reconstruction.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 1R41MH112318)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 1R01MH110932)en_US
dc.description.sponsorshipUnited States. Army Research Office (Grant W911NF1510548)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 1RM1HG008525)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Award 1DP1NS087724)en_US
dc.publisherFrontiers Research Foundationen_US
dc.relation.isversionofhttp://dx.doi.org/10.3389/FNCOM.2017.00097en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceFrontiersen_US
dc.titleFeasibility of 3D Reconstruction of Neural Morphology Using Expansion Microscopy and Barcode-Guided Agglomerationen_US
dc.typeArticleen_US
dc.identifier.citationYoon, Young-Gyu et al. “Feasibility of 3D Reconstruction of Neural Morphology Using Expansion Microscopy and Barcode-Guided Agglomeration.” Frontiers in Computational Neuroscience 11 (October 2017): 97 © 2017 Yoon et al.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.mitauthorYoon, Young Gyu
dc.contributor.mitauthorDai, Peilun
dc.contributor.mitauthorWohlwend, Jeremy
dc.contributor.mitauthorChang, Jae-Byum
dc.contributor.mitauthorMarblestone, Adam Henry
dc.contributor.mitauthorBoyden, Edward
dc.relation.journalFrontiers in Computational Neuroscienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-04T13:44:32Z
dspace.orderedauthorsYoon, Young-Gyu; Dai, Peilun; Wohlwend, Jeremy; Chang, Jae-Byum; Marblestone, Adam H.; Boyden, Edward S.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1812-6421
dc.identifier.orcidhttps://orcid.org/0000-0002-1680-0526
dc.identifier.orcidhttps://orcid.org/0000-0003-2055-4900
dc.identifier.orcidhttps://orcid.org/0000-0002-0419-3351
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record