Show simple item record

dc.contributor.authorDunning, Iain Robert
dc.contributor.authorHuchette, Joseph Andrew
dc.contributor.authorLubin, Miles C
dc.contributor.authorVielma, Juan Pablo
dc.date.accessioned2018-05-16T14:19:41Z
dc.date.available2018-05-16T14:19:41Z
dc.date.issued2016-11
dc.identifier.issn1867-2949
dc.identifier.issn1867-2957
dc.identifier.urihttp://hdl.handle.net/1721.1/115391
dc.description.abstractIn this paper we consider the use of extended formulations in LP-based algorithms for mixed integer conic quadratic programming (MICQP). Extended formulations have been used by Vielma et al. (INFORMS J Comput 20: 438–450, 2008) and Hijazi et al. (Comput Optim Appl 52: 537–558, 2012) to construct algorithms for MICQP that can provide a significant computational advantage. The first approach is based on an extended or lifted polyhedral relaxation of the Lorentz cone by Ben-Tal and Nemirovski (Math Oper Res 26(2): 193–205 2001) that is extremely economical, but whose approximation quality cannot be iteratively improved. The second is based on a lifted polyhedral relaxation of the euclidean ball that can be constructed using techniques introduced by Tawarmalani and Sahinidis (Math Programm 103(2): 225–249, 2005). This relaxation is less economical, but its approximation quality can be iteratively improved. Unfortunately, while the approach of Vielma, Ahmed and Nemhauser is applicable for general MICQP problems, the approach of Hijazi, Bonami and Ouorou can only be used for MICQP problems with convex quadratic constraints. In this paper we show how a homogenization procedure can be combined with the technique by Tawarmalani and Sahinidis to adapt the extended formulation used by Hijazi, Bonami and Ouorou to a class of conic mixed integer programming problems that include general MICQP problems. We then compare the effectiveness of this new extended formulation against traditional and extended formulation-based algorithms for MICQP. We find that this new formulation can be used to improve various LP-based algorithms. In particular, the formulation provides an easy-to-implement procedure that, in our benchmarks, significantly improved the performance of commercial MICQP solvers.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CMMI-1351619)en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s12532-016-0113-yen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleExtended formulations in mixed integer conic quadratic programmingen_US
dc.typeArticleen_US
dc.identifier.citationVielma, Juan Pablo, et al. “Extended Formulations in Mixed Integer Conic Quadratic Programming.” Mathematical Programming Computation, vol. 9, no. 3, Sept. 2017, pp. 369–418.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Centeren_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorVielma Centeno, Juan Pablo
dc.contributor.mitauthorDunning, Iain Robert
dc.contributor.mitauthorHuchette, Joseph Andrew
dc.contributor.mitauthorLubin, Miles C
dc.relation.journalMathematical Programming Computationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-08-02T04:27:30Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag Berlin Heidelberg and The Mathematical Programming Society
dspace.orderedauthorsVielma, Juan Pablo; Dunning, Iain; Huchette, Joey; Lubin, Milesen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0003-4335-7248
dc.identifier.orcidhttps://orcid.org/0000-0001-6721-5506
dc.identifier.orcidhttps://orcid.org/0000-0003-3552-0316
dc.identifier.orcidhttps://orcid.org/0000-0001-6781-9633
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record