Show simple item record

dc.contributor.authorMiller, Kelly
dc.contributor.authorYoo, Junehee
dc.contributor.authorMazur, Eric
dc.contributor.authorZyto, Sacha
dc.contributor.authorKarger, David R
dc.date.accessioned2018-05-16T16:32:02Z
dc.date.available2018-05-16T16:32:02Z
dc.date.issued2016-12
dc.date.submitted2015-10
dc.identifier.issn2469-9896
dc.identifier.issn1554-9178
dc.identifier.urihttp://hdl.handle.net/1721.1/115399
dc.description.abstractWe discuss student participation in an online social annotation forum over two semesters of a flipped, introductory physics course at Harvard University. We find that students who engage in high-level discussion online, especially by providing answers to their peers' questions, make more gains in conceptual understanding than students who do not. This is true regardless of students' physics background. We find that we can steer online interaction towards more productive and engaging discussion by seeding the discussion and managing the size of the sections. Seeded sections produce higher quality annotations and a greater proportion of generative threads than unseeded sections. Larger sections produce longer threads; however, beyond a certain section size, the quality of the discussion decreases.en_US
dc.publisherAmerican Physical Society (APS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PHYSREVPHYSEDUCRES.12.020143en_US
dc.rightsCreative Commons Attribution 3.0 Unported licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en_US
dc.sourceAPSen_US
dc.titleAnalysis of student engagement in an online annotation system in the context of a flipped introductory physics classen_US
dc.typeArticleen_US
dc.identifier.citationMiller, Kelly et al. “Analysis of Student Engagement in an Online Annotation System in the Context of a Flipped Introductory Physics Class.” Physical Review Physics Education Research 12, 2 (December 2016): 020143 © 2016 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.mitauthorZyto, Sacha
dc.contributor.mitauthorKarger, David R
dc.relation.journalPhysical Review Physics Education Researchen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-04T16:29:57Z
dspace.orderedauthorsMiller, Kelly; Zyto, Sacha; Karger, David; Yoo, Junehee; Mazur, Ericen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0024-5847
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record