Show simple item record

dc.contributor.authorSlomka, Jonasz Jozef
dc.contributor.authorDunkel, Joern
dc.date.accessioned2018-05-16T17:33:44Z
dc.date.available2018-05-16T17:33:44Z
dc.date.issued2017-04
dc.date.submitted2016-08
dc.identifier.issn2469-990X
dc.identifier.urihttp://hdl.handle.net/1721.1/115406
dc.description.abstractWe investigate flow pattern formation and viscosity reduction mechanisms in active fluids by studying a generalized Navier-Stokes model that captures the experimentally observed bulk vortex dynamics in microbial suspensions. We present exact analytical solutions including stress-free vortex lattices and introduce a computational framework that allows the efficient treatment of higher-order shear boundary conditions. Large-scale parameter scans identify the conditions for spontaneous flow symmetry breaking, geometry-dependent viscosity reduction, and negative-viscosity states amenable to energy harvesting in confined suspensions. The theory uses only generic assumptions about the symmetries and long -wavelength structure of active stress tensors, suggesting that inviscid phases may be achievable in a broad class of nonequilibrium fluids by tuning confinement geometry and pattern scale selection.en_US
dc.description.sponsorshipSolomon Buchsbaum AT&T Research Funden_US
dc.description.sponsorshipAlfred P. Sloan Foundation. Fellowshipen_US
dc.description.sponsorshipMassachusetts Institute of Technology. Department of Mathematics (Edmund F. Kelly Research Award)en_US
dc.publisherAmerican Physical Society (APS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PHYSREVFLUIDS.2.043102en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAPSen_US
dc.titleGeometry-dependent viscosity reduction in sheared active fluidsen_US
dc.typeArticleen_US
dc.identifier.citationSłomka, Jonasz, and Jörn Dunkel. “Geometry-Dependent Viscosity Reduction in Sheared Active Fluids.” Physical Review Fluids, vol. 2, no. 4, Apr. 2017. © 2017 American Physical Society.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorSlomka, Jonasz Jozef
dc.contributor.mitauthorDunkel, Joern
dc.relation.journalPhysical Review Fluidsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-08T13:43:33Z
dspace.orderedauthorsSłomka, Jonasz; Dunkel, Jörnen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0464-2700
dc.identifier.orcidhttps://orcid.org/0000-0001-8865-2369
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record