Show simple item record

dc.contributor.authorCho, Hyunghoon
dc.contributor.authorBerger Leighton, Bonnie
dc.contributor.authorPeng, Jian
dc.date.accessioned2018-05-17T17:31:08Z
dc.date.available2018-05-17T17:31:08Z
dc.date.issued2016-11
dc.date.submitted2016-08
dc.identifier.issn2405-4712
dc.identifier.urihttp://hdl.handle.net/1721.1/115430
dc.description.abstractThe topological landscape of molecular or functional interaction networks provides a rich source of information for inferring functional patterns of genes or proteins. However, a pressing yet-unsolved challenge is how to combine multiple heterogeneous networks, each having different connectivity patterns, to achieve more accurate inference. Here, we describe the Mashup framework for scalable and robust network integration. In Mashup, the diffusion in each network is first analyzed to characterize the topological context of each node. Next, the high-dimensional topological patterns in individual networks are canonically represented using low-dimensional vectors, one per gene or protein. These vectors can then be plugged into off-the-shelf machine learning methods to derive functional insights about genes or proteins. We present tools based on Mashup that achieve state-of-the-art performance in three diverse functional inference tasks: protein function prediction, gene ontology reconstruction, and genetic interaction prediction. Mashup enables deeper insights into the struct ure of rapidly accumulating and diverse biological network data and can be broadly applied to other network science domains. Keywords: interactome analysis; network integration; heterogeneous networks; dimensionality reduction; network diffusion; gene function prediction; genetic interaction prediction; gene ontology reconstruction; drug response predictionen_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01GM081871)en_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.CELS.2016.10.017en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceElsevieren_US
dc.titleCompact Integration of Multi-Network Topology for Functional Analysis of Genesen_US
dc.typeArticleen_US
dc.identifier.citationCho, Hyunghoon et al. “Compact Integration of Multi-Network Topology for Functional Analysis of Genes.” Cell Systems 3, 6 (December 2016): 540–548 © 2016 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorCho, Hyunghoon
dc.contributor.mitauthorBerger Leighton, Bonnie
dc.contributor.mitauthorPeng, Jian
dc.relation.journalCell Systemsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-16T16:39:19Z
dspace.orderedauthorsCho, Hyunghoon; Berger, Bonnie; Peng, Jianen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2713-0150
dc.identifier.orcidhttps://orcid.org/0000-0002-2724-7228
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record