Show simple item record

dc.contributor.authorDemanet, Laurent
dc.contributor.authorHand, Paul
dc.date.accessioned2018-05-17T19:30:44Z
dc.date.available2018-05-17T19:30:44Z
dc.date.issued2014-07
dc.date.submitted2014-05
dc.identifier.issn2049-8764
dc.identifier.issn2049-8772
dc.identifier.urihttp://hdl.handle.net/1721.1/115483
dc.description.abstractWe address the problem of recovering a sparse n-vector within a given subspace. This problem is a subtask of some approaches to dictionary learning and sparse principal component analysis. Hence, if we can prove scaling laws for recovery of sparse vectors, it will be easier to derive and prove recovery results in these applications. In this paper, we present a scaling law for recovering the sparse vector from a subspace that is spanned by the sparse vector and k random vectors. We prove that the sparse vector will be the output to one of n linear programs with high probability if its support size s satisfies s≲n√/klogn. The scaling law still holds when the desired vector is approximately sparse. To get a single estimate for the sparse vector from the n linear programs, we must select which output is the sparsest. This selection process can be based on any proxy for sparsity, and the specific proxy has the potential to improve or worsen the scaling law. If sparsity is interpreted in an ℓ1/ℓ∞ sense, then the scaling law cannot be better than s≲n/√k. Computer simulations show that selecting the sparsest output in the ℓ1/ℓ2 or thresholded-ℓ0 senses can lead to a larger parameter range for successful recovery than that given by the ℓ1/ℓ∞ sense.en_US
dc.publisherOxford University Press (OUP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/IMAIAI/IAU007en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleScaling law for recovering the sparsest element in a subspaceen_US
dc.typeArticleen_US
dc.identifier.citationDemanet, L., and P. Hand. “Scaling Law for Recovering the Sparsest Element in a Subspace.” Information and Inference 3, 4 (July 2014): 295–309 © 2014 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorDemanet, Laurent
dc.contributor.mitauthorHand, Paul
dc.relation.journalInformation and Inferenceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-17T17:48:06Z
dspace.orderedauthorsDemanet, L.; Hand, P.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7052-5097
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record