Show simple item record

dc.contributor.authorShanahan, Phiala E.
dc.contributor.authorTrewartha, Daniel
dc.contributor.authorDetmold, William
dc.date.accessioned2018-05-21T13:15:41Z
dc.date.available2018-05-21T13:15:41Z
dc.date.issued2018-05
dc.date.submitted2018-01
dc.identifier.issn2470-0010
dc.identifier.issn2470-0029
dc.identifier.urihttp://hdl.handle.net/1721.1/115530
dc.description.abstractNumerical lattice quantum chromodynamics studies of the strong interaction are important in many aspects of particle and nuclear physics. Such studies require significant computing resources to undertake. A number of proposed methods promise improved efficiency of lattice calculations, and access to regions of parameter space that are currently computationally intractable, via multi-scale action-matching approaches that necessitate parametric regression of generated lattice datasets. The applicability of machine learning to this regression task is investigated, with deep neural networks found to provide an efficient solution even in cases where approaches such as principal component analysis fail. The high information content and complex symmetries inherent in lattice QCD datasets require custom neural network layers to be introduced and present opportunities for further development.en_US
dc.description.sponsorshipUnited States. Department of Energy (Award DE-SC0010495)en_US
dc.description.sponsorshipUnited States. Department of Energy (Grant DE-SC0011090)en_US
dc.description.sponsorshipUnited States. Department of Energy (Award DE-SC0018121)en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevD.97.094506en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0en_US
dc.sourceAmerican Physical Societyen_US
dc.titleMachine learning action parameters in lattice quantum chromodynamicsen_US
dc.typeArticleen_US
dc.identifier.citationShanahan, Phiala E. et al. "Machine learning action parameters in lattice quantum chromodynamics." Physical Reveiw D 97, 9 (May 2018): 094506en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Theoretical Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorDetmold, William
dc.relation.journalPhysical Review Den_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-17T18:00:24Z
dc.language.rfc3066en
dspace.orderedauthorsShanahan, Phiala E.; Trewartha, Daniel; Detmold, Williamen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0400-8363
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record